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Abstract
Over the past decade there has been a striking increase in the number of quantitative studies
examining the effects of social (i.e., socioeconomic) mobility, with almost all recent results in
sociology and demography based on Sobel’s (1981, 1985) Diagonal Reference Model (DRM).
This paper makes four main contributions to this rapidly expanding literature. First, we show
that under plausible values ofmobility effects, theDRMwill, in general, implicitly force the un-
derlying mobility linear effect to zero. In addition, we show both mathematically and through
simulations that the mobility effects estimated by the DRM are sensitive to the size and sign
of the origin and destination linear effects, often in ways that are unlikely to be intuitive to
applied researchers. This finding clarifies why, contrary to expectations, applied researchers
have generally found weak or no evidence of mobility effects on a wide range of outcomes.
Second, we generalize the identification problem of conventional mobility effect models by
showing that the DRM and related methods can be viewed as special cases of a bounding anal-
ysis, where identification is achieved by invoking extremely strong assumptions (resulting in
very tight bounds). Finally, and importantly, we present a new framework for the analysis of
mobility tables based on the identification and estimation of joint parameter sets, introduc-
ing what we call the Structural and Dynamic Inequality (SDI) model. We show that this model
is fully identified, relies on much weaker assumptions than conventional models of mobility
effects, and can be treated both as a descriptive model and, if additional assumptions are in-
voked, as a causalmodel. We concludewith an agenda for further research on the consequences
of socioeconomic mobility.

Introduction

The inconsistent (and often small) mobility effects that this literature has estimated appear to re-

fute longstanding sociological theory and present a general challenge tomuch of the work on social

mobility undertaken by sociologists and demographers. Since the influential work of Lipset and

Bendix (1959), researchers have carried out a number of important and widely cited studies explor-

ing differences in rates of social mobility across and within countries (e.g., Bloome 2015; Chetty et

al. 2014; Erikson and Goldthorpe 1992; Grusky and Hauser 1984). To the extent that a high de-

gree of social fluidity is considered a normatively desirable aim (for a critical perspective see Swift

2004), these studies provide important descriptive evidence on the degree of openness of a given so-

ciety or place. However, as Lipset and Zetterberg (1959) pointed out, “unless variations in mobility

rates and in the subjective experience of mobility make a difference for society or for the behavior

pattern of an individual, knowledge concerning rates of mobility will be of purely academic inter-

est” (6). Based on today’s quantitative evidence, it would seem that generations of sociologists and

demographers have been trying to explain an outcome that is, on the whole, of little consequence

to the individual. Interest in the consequences of social mobility is longstanding (for reviews see

Hendrickx et al. 1993; Hope 1971, 1975). From its earliest days, the scientific literature on social
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mobility, or the experience of moving up or down the class hierarchy of a given society, has de-

bated its individual-level effects. For example, the sociologist Pitirim Sorokin (1927) hypothesized

negative effects of not just downward but also upward social mobility on individual well-being, as

those who reach a status different from that of their parents may suffer from the cultural gap be-

tween their attained position and their family origins (see also Friedman 2016). Nearly a century

later, there is a large body of quantitative sociological research that has sought to estimate the di-

rect effects of the experience of social mobility on a wide range of individual outcomes, including

well-being (e.g., life satisfaction, stress, allostatic load, substance abuse), attitudes (e.g., trust, politi-

cal ideology, redistribution preferences), and behaviors (e.g., voting, fertility, health behaviors) (see

also Online Appendix D).

Progress in empirically identifying the effects of social mobility on individuals has been ham-

pered by a fundamental methodological challenge. Observed social mobility (M ) is simply the dif-

ference between an individual’s social destination (D), such as their own social class, and their social

origin (O), such as their parents’ social class, so thatM = D−O. As a result, any model of mobil-

ity effects that seeks to estimate the independent effects of social origins, social destinations, and

the difference between them, i.e., social mobility, is underidentified and cannot be estimated us-

ing conventional statistical techniques (Manski 1990, 2003). In contrast to problems of statistical

inference, which involve understanding how sampling variability can affect conclusions based on

samples of limited size, problems of identification entail understanding what conclusions can be

drawn even with a sample of unlimited size. The lack of a unique solution of mobility effects is a

classic identification problem, because it cannot be resolved by collecting larger samples.

To estimate such effects, a variety of techniques have been proposed, but the most popular ap-

proaches are those developed by the sociologists Otis Dudley Duncan (1966) and Michael Sobel

(1981, 1985). A first wave of research, influenced by Duncan’s (1966) Square Additive Model (SAM), a

basic two-factor origin-destinationmodel with residual interaction terms, found no effect of social

mobility on a number of outcomes (see also Hope 1971, 1975). This is partly explained by the fact

that Duncan’s proposed model assumes that the linear effect of mobility is zero, as was recognized

by at least some social scientists at the time (Blalock 1967: 794-795). Another wave of research
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resulted from Sobel’s (1981, 1985) Diagonal Reference Model (DRM),1, which is seen as the “gold

standard” for mobility effects research (Houle and Martin 2011: 197; Präg and Richards 2018:5;

Sieben 2017). The statistician Sir David Cox (1990), for example, has lauded the DRM as an exem-

plar of “directly substantive” models in statistical analysis (170). In recent years, sociologists have

used Sobel’s model to explain a wide range of outcomes, including subjective well-being, political

extremism, obesity, and so on (the list is too long to include here but see Online Appendix D). How-

ever, as we show, like Duncan’s model, the DRM relies on very strong assumptions about the effects

of social mobility.

The remainder of this paper is organized as follows. First, we outline the identification chal-

lenge, clarifying what can be known about the data from a mobility table with as few assumptions

as possible. We make explicit how, under a general model of mobility effects, the nonlinear ef-

fects are identified and the linear effects are not. Second, we discuss the mathematical properties

of the DRM, revealing that the DRM generates different mobility linear effects depending on both

the size and sign of the linear and nonlinear effects of origin and destination. In doing so, we re-

visit Sobel’s (1981) findings on fertility and show that his data are consistent with a wide range of

very large negative as well as positive linear mobility effects, none of which are recovered by the

DRM. Third, we generalize models of mobility effects, showing how any existing mobility model

that attempts to identify unique “effects” can be viewed as a special case of a bounding approach,

except with extremely narrow bounds and thus extremely strong assumptions. Finally, we outline

a new framework for analyzing mobility data using what we call the Structural and Dynamic In-

equality (SDI) model. Using this model, we demonstrate how one can describe both dynamic (or

mobility-based) inequalities as well as those that are purely structural (reflecting an absence of so-

cial mobility). As we discuss, these estimates can also be interpreted as joint causal effects, and

therefore involve much weaker assumptions than estimates from conventional models of mobility

effects. We conclude with a programmatic statement outlining guidelines for further research on

the individual-level consequences of social mobility.
1In this paper we use “diagonal referencemodel” to refer to Sobel’s “simple diagonal referencemodel” (1981), which

includes a single weight for the entiremobility table. However, ourmain claims hold for other versions of theDRM that
allow weights to differ by either origin or destination class (Sobel 1985), or by both origin and destination (Weakliem
1992: 157).
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I. The Diagonal Reference Model

As noted in the introduction, by far the most common approach to model mobility effects is the

Diagonal Reference Model (DRM) developed by the sociologist Michael Sobel (1981, 1985). This

popularity is indicated by the spike in recent works using the DRM to estimate mobility effects,

as shown in Figure 1. This is also demonstrated by the widespread agreement in the literature on

the importance and utility of the DRM for understanding the consequences of social mobility. For

instance, Houle andMartin (2011: 197) note, theDRM is “the onlymethod used inmodernmobility

effects research.” Likewise, Sieben (2017) writes that DRMs “are thought to be the best solution to

[the identification] problem.” Präg and Richards (2018: 5) echo this claim, correctly stating: “A con-

sensus is emerging in the literature that the diagonal referencemodel is superior to othermodelling

approaches and results based on other approaches are questionable at best.”

There is similarly widespread agreement that the DRM is effective in separating out the effects

of mobility from those of origin and destination. For example, Schuck and Steiber (2018: 1249)

write that the DRM “tests for the net effects of intergenerational mobility over and above the effects

of educational origin and destination, finally allowing mobility effects to be separated from mere

level effects [emphasis in original].” Unfortunately, however, the DRM relies on extremely strong

assumptions and, absent additional information external to the data, there is no reason to think that

the model will actually recover the “true” underlying mobility effect.

In this section, we first outline the basic mathematical properties of the DRM. As we illustrate,

the DRM assumes that the origin and destination effects are proportional to each other, and thus

we will refer to this assumption as the “proportionality constraint” (see also Weakliem 1992: 157).

Failure to satisfy this constraint may lead to erroneous estimates of the overall effects of origin,

destination, and mobility. This is true of the linear effects, but also of the nonlinear effects, which,

as noted above, are identified.2 Second, we revisit Sobel’s (1981) fertility data and show, mathemat-

ically and with simulations, that the DRM will fix the mobility linear effect at a very specific value

even when the underlying mobility linear effect is extremely positive or negative. This is another

way of stating that the proportionality constraint may hold for the nonlinear effects, but still not
2This means that this constraint can be partially tested against the data. For a similar point, see Weakliem (1992:

157).
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hold for the linear effects. Unfortunately, the data are not themselves informative about whether or

not this constraint is satisfied. Finally, we develop a simple formula that, when the proportionality

constraint is satisfied, clarifies the nature of the bias of the estimated mobility linear effect. As we

show, the mobility linear effect generated by DRM is a function of the size, sign, and shape of the

origin and destination effects. It is only under very specific conditions, namely when the ratio of

the origin and destination weights equals the ratio of the underlying origin and destination linear

effects, that the DRMwill recover the true underlying mobility linear effect.

1. Overview of the DRM

To orient the discussion that follows, suppose we have a set of categorical variables for i = 1, . . . I

origin groups, j = 1, . . . , J destination groups, and k = j − i + I, . . .K mobility groups. The

fundamental model of mobility effects can be specified using what we call the Classical Origin-

Destination-Mobility (C-ODM) model:

Y = f(O∗, D∗,M∗) + ϵ = µ+ αi + βj + γk + ηijk + ξrijk, (1)

where µ is the intercept (or overall mean); αi, βj , γk denote the ith, jth, kth observed levels of

origin, destination, and mobility, respectively; ηijk is an additional (orthogonal) term denoting in-

teractions; and ξrijk is an individual-level, normally-distributed error termwith a mean of zero. As

we discuss in Online Appendix B, Equation 1 is based on the implicit assumption that O, D, and

M (and their respective indices) can be treated as surrogates for distinct causal variables O∗, D∗,

andM∗ (and their respective indices). To simplify the exposition, we will accordingly refer to αi,

βj , and γk as the “true” origin, destination, and mobility effects, but the reader should keep in mind

that this is shorthand, as detailed in Online Appendix B, for referring to the causal effects α∗
l , β∗

p ,

γ∗n (for a similar point, see Fosse and Winship 2019a).

An alternative formulation of the C-ODM model (see Equation 1) helps clarify the nature of

the identification problem. By orthogonalizing the linear from the nonlinear terms, we can specify

what we call the Linearized Origin-Destination-Mobility (L-ODM) model:

µrijk = µ+ α(i− i∗) + β(j − j∗) + γ(k − k∗) + α̃i + β̃j + γ̃k + ηijk + ξrijk (2)
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where the asterisks denote midpoint or referent indices i∗ = (I + 1)/2, j∗ = (J + 1)/2, and

k∗ = (K + 1)/2; α, β, and γ denote the linear effects of origin, destination, and mobility, re-

spectively; and α̃, β̃, and γ̃ represent the origin, destination, and mobility nonlinear effects, re-

spectively; ηijk is, as before, an additional (orthogonal) term denoting interactions; and ξrijk is a

normally-distributed individual-level error term with a mean of zero. To identify the levels of the

parameters given the inclusion of the intercept, sum-to-zero constraints are applied to the linear

and nonlinear parameters. The L-ODM greatly simplifies the nature of the identification problem,

allowing us to show how the DRM makes highly specific assumptions about the unknown origin,

destination, and mobility linear effects. Moreover, as we show later, it allows one to use graphical

tools for visualizing and partially identifying the parameters of a mobility effects model.

TheL-ODMhighlights that the core identification challenge resides in the linear effects (α, β, γ).

The Diagonal Reference Model (DRM), the most prevalent method used to address this challenge

and estimate distinctmobility effects, achieves point identification by imposinghighly specific iden-

tifying constraints with respect to these linear effects. To understand this, it is crucial to recognize

that the DRM is a nonlinear model in that at least one of the (unknown) model parameters are a

nonlinear function of at least one of the other (unknown) model parameters. By contrast, conven-

tional linear regression is linear in the parameters, although it can be parameterized so that it is

nonlinear in the variables. The general form for a nonlinear regression model is as follows:

yr = f(xr, θθθ) + ϵr (3)

where r = 1, . . . , R indexes the rows (e.g., individuals) of the data set, q = 1, . . . , Q the number of

variables in the model, and p = 1, . . . , P the number of parameters; yr is the outcome of the rth

row; f is a known function; xr is a Q × 1 column vector of variables x1r, . . . , xQr; θθθ is a P × 1

column vector of parameters θ1, . . . , θP ; and ϵr is an error term.3

Suppose we have a data set based on aggregated data from a mobility table with rows indexed

by r = 1, . . . , R = I × J . The DRM is a particular kind of nonlinear model that begins with the

following as a baseline model:
3Similar to conventional linear regression, it is typically assumed that the errors are uncorrelated with each other

and have a mean of zero with constant variance.
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µijk = f(xr, θθθ) = woµi[j=i] + wdµ[i=j]j + ϕijk (4)

with

wo =
eξ1

eξ1 + eξ2
and wd = 1− wo =

eξ2

eξ1 + eξ2
,

where µijk is the mean outcome for a particular cell on the mobility table indexed by i and j (with

k = j − i + I ); wo is the class origin weight; wd is the class destination weight, which is equal

to 1 − wo; ξ1 and ξ2 are the origin and destination parameters, respectively, used to calculate the

weights; µi[j=i] and µ[i=j]j are the diagonal means of the mobility table indexed by class origin and

destination, respectively; and ϕijk is a cell-specific error term.4

Above the baselinemodel, mobility effects can be parameterized as a set of categorical variables:

µijk = woµi[j=i] + wdµ[i=j]j + γk + ϕijk (5)

where γk denotes the set of mobility effect parameters using, say, sum-to-zero deviation coding.

Sobel (1981: 902) suggests that mobility effects are present whenever the γk ’s in Equation 5 are

statistically significant.5

The DRM as outlined in Equation 5 and applied to a three-by-three mobility table is shown in

Table 1. The joint origin and destination effects for the cells on the main diagonal, representing

non-mobile groups, are given by the estimates of µi[j=i] (or, equivalently, µ[i=j]j ).6 For example, if

there are I = 3 origin categories and J = 3 destination categories, as is the case in Table 1, then the

joint origin and destination effects on the main diagonal are given by µ11, µ22, and µ33. The joint
4Note that, because Equation 4 is nonlinear, it cannot be estimated using ordinary least squares. Formally, for

nonlinear models, at least one of the derivatives of the expectation function with respect to the parameters depends on
at least one or more of the parameters.

5In the analyses below, we assume that we have included a full set of nonlinear effects for mobility. In practice,
many researchers have tended to aggregate the mobility effects variables (see Sobel 1981: 901-902). In fully-identified
models this is not particularly problematic, but in the case of unidentified models such seemingly minor decisions can
have important consequences. Note that collapsing just two of mobility categories is sufficient to identify the model,
equivalent to making a very strong, tacit assumption about the size and sign of the underlying linear effects. Collapsing
a larger number of categories has an equivalent impact. These seemingly minor modeling decisions contribute in part
to the heterogeneity of results in the mobility effects literature.

6To see this, let the main diagonal cells be indexed by n = 1, . . . , N . For nth cell on the main diagonal, where
µi[j=i] = µ[i=j]j = µn, the joint origin and destination effects equalwoµn + wdµn = woµn + (1− wo)µn = µn.
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origin and destination effects for the cells off the main diagonal, representing mobile groups, are

given by woµi[j=i] + wdµ[i=j]j , where wo and wd can be interpreted as the relative salience of the

origin and destination categories, respectively. For instance, as shown in Table 1, the joint effects

for origin and destination in the cell i = 2 and j = 1 are given by woµ22 + wdµ11.

To understand the underlying mathematical properties of the DRM, it is useful to describe the

weights needed to recover the underlying origin, destination, andmobility effects.7 The truemeans

on the main diagonal can be written as (cf. Equation 2):

µi[j=i] (or µ[i=j]j) = µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j with j = i (or i = j), (6)

where µ is the overall mean; α and β are the true origin and destination mobility linear effects;

α̃i is the ith origin nonlinear effect; β̃i is the jth destination nonlinear effect; i∗ = (I + 1)/2

and j∗ = (J + 1)/2. Note again that we assume that, to identify the intercept, we have applied

sum-to-zero constraints on the origin, destination, and mobility effects.

The weight required to recover the true contribution of the ith origin effect is:

woi =
α(i− i∗) + α̃i

µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j
with j = i, (7)

wherewoi is theweight of the ith origin category. Thenmultiplying thisweight by themain diagonal

mean (Equation 6) will generate the ith origin effect:

µi[j=i]woi =
(
µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j

)( α(i− i∗) + α̃i

µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j

)
= α(i− i∗) + α̃i with j = i.

Similarly, the actual weight required to recover the true value of the jth destination effect is:

wdj =
β(j − j∗) + β̃j

α(i− i∗) + β(j − j∗) + α̃i + β̃j
with i = j, (8)

where wdj is the weight of the jth destination category. Multiplying this weight by the main diag-

onal mean (Equation 6) will generate the jth destination effect:

µ[i=j]jwdj =
(
µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j

)( β(j − j∗) + β̃j

µ+ α(i− i∗) + β(j − j∗) + α̃i + β̃j

)
= β(j − j∗) + β̃j with i = j.

7For simplicity, and without a loss of generality, we assume that there are no error terms in the following sections.
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Crucially, the weights in Equations 7 and 8 are unknown, because they require knowledge of the

unidentified origin and destination linear effects. Note further that the weights are allowed to vary

across class and destination origins, respectively, and there is no restriction that the weights sum to

one (or some other value).

By contrast, the DRM’s proportionality constraint means that we assume that the origin and

destination effects canbe characterized by a single originweight (or, equivalently, destinationweight).

In essence, the DRM attempts to recover the true origin and destination effects (and, accordingly,

the true mobility effects) by splitting the main diagonal cells of a mobility table into origin and des-

tination components. More specifically, the proportionality constraint assumes that the relative

contributions of the linear and nonlinear origin effects with i = j are the same, and that the same

relative proportion of the grand (or overall) mean is attributable to class origin. That is, with respect

to the class origin weight, the DRM assumes the following:

wo =
µα
µ

=
α

α+ β
=

α̃i

α̃i + β̃[j=i]

for i = 1, . . . , I, (9)

where µα is that part of the overall mean that is attributable to class origin. Similarly, the DRM

assumes that the relative contributions of the linear and nonlinear destination effects with j = i

are identical, with the same relative proportion of the grand (or overall) mean attributable to class

destination. In other words, the DRM assumes the following with respect to the class destination

weights:

wd =
µβ
µ

=
β

α+ β
=

β̃j

α̃i=j + β̃j
for j = 1, . . . , J, (10)

where µβ is that part of the overall mean that is attributable to class origin. Note that it is also

implied that the origin and destination linear effects are of the same sign (or one of them is zero),

and that the size of each linear effect is constrained to lie between 0 and α + β, inclusive.

Assuming these proportionality constraints are valid, multiplying the origin weight by themain

diagonals will give the following set of origin effects:

µi[j=i]wo = µwo + [(α+ β)wo](i− i∗) + α̃i, (11)

9



where wo is defined as in Equation 9. Because wo = µα/µ as well as α/(α + β), plugging in

these values for the origin weight into Equation 9 will recover the values of µα and α, respectively.

Likewise, multiplying the destination weight by the main diagonals will give the following set of

destination effects:

µ[i=j]jwd = µwd + [(α+ β)wd](j − j∗) + β̃j , (12)

wherewd is defined as in Equation 10. Similar to the above, becausewd = µβ/µ as well as β/(α+

β), substituting these values for the destination weight into Equation 10 will recover result in the

values of µβ and β, respectively.

Under the proportionality constraint, simple formulas for calculating the origin, destination,

andmobility linear effects can be derived. Specifically, given the proportionality constraint, the ori-

gin linear effect generated by theDRM is α̂ = (α+β)wo, and the estimated destination linear effect

is β̂ = (α+β)wd.8 Aswell, the estimatedmobility linear effect is given by γ̂ = (γ−α)+(α+β)wo

or, equivalently, γ̂ = (γ + β) − (α + β)wd.9 However, again it should be emphasized that these

calculations assume that the proportionality constraint holds or, equivalently, that the weights are

correct. Because the origin, destination, and mobility linear effects are not identified, the propor-

tionality assumption with respect to the linear effects cannot be tested against the data: the plau-

sibility of this assumption can only be justified by appealing to theory or substantive knowledge

about the underlying processes of social mobility.

With actual data, the origin and destination weights estimated by the DRM (i.e., ŵo and ŵd,

respectively) are a function of the underlying origin and destination nonlinear effects. Intuitively

this makes sense, as these are identifiable components of the model while the linear effects are not.

If the actual origin and destination nonlinear effects conform to the proportionality constraint, then

the DRM’s estimated weights will correctly recover these underlying nonlinear effects.10 If there

are no underlying origin, destination, and mobility nonlinear effects, then the DRM will generate
8Note that, accordingly, theDRMassumes that the origin and destination linear effects have the same sign (or one of

the linear effects is zero). Likewise, the size of each linear effect is bounded between zero and (α+β). We build on this
information later to generalize the DRM to a bounding approach grounded in partial rather than point identification.

9Note that all of these joint slopes are identified. We discuss this issue further in a later section.
10If the actual nonlinear effects do not conform to the proportionality constraint, then the DRM will still enforce

the constraint on the estimated nonlinear effects, essentially assuming that these are equal to the true nonlinear effects.
However, this will not in general be the case.
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origin and destination weights of ŵo = 0.500 and ŵd = 0.500. In other words, absent additional

information about the origin and destination linear effects, the DRM will assign equal value to the

origin and destination categorieswith respect to themain diagonals of themobility table. This is not

an unreasonable assumption if there is no additional information available about the magnitude or

direction of the linear effects, but researchers should be aware that it is an assumption nonetheless,

and not an intrinsic feature of the data. We revisit this issue later when we discuss a generalization

of bounding analyses for mobility effects models.

The above suggests a procedure for at least partially testing the plausibility of the proportional-

ity constraint against the data. By fitting the L-ODM under a constraint, such as a zero destination

linear effect, we can obtain a set of estimates of the underlying overall nonlinear effects of origin,

destination, andmobility. We can then compare these nonlinear effects with those estimated by the

DRM. If these are discrepant, then this suggests that the DRM is inappropriate, inasmuch it fails

to recover the actual nonlinear effects. Alternatively, we can test whether or not the relative ratios

of the origin and destination nonlinear effects are the same, as required by the DRM’s proportion-

ality constraint (see Equations 9 and 10). For example, we can examine whether or not the ratio

of the first origin nonlinear effect to the sum of the first origin and destination nonlinear effects

is the same as the ratio of the second origin nonlinear effect to the sum of the second origin and

destination nonlinear effects. If these ratios are the same, then this lends indirect support for the

plausibility of the proportionality constraint. However, as we show below, even when the propor-

tionality constraint holds with respect to the nonlinear effects, there is no guarantee that the DRM

will recover the underlying mobility linear effect.

2. Sobel’s Fertility Findings Revisited

In this sectionwe re-examine Sobel’s (1981) findings on fertility using theDRM.We show that, even

though the DRM assumes that there are virtually no mobility linear effects, the data are consistent

with very large negative and positive linear effects. Sobel’s original data on fertility is shown in

Table 2. The outcome is the average number of children ever born by father’s occupation (origin)

and husband’s 1962 occupation (destination) among wives aged 42 to 61 years in March 1962 who

were currently living with their husband in the OCG sample. The total sample size isR = 5, 958.
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We first examine the plausibility of the proportionality constraint assumed by the DRM in the

case of Sobel’s fertility data. As noted in the previous section, this can be partially tested against

the data because the nonlinear effects are identified. We first fit the L-ODM model by fixing the

destination slope to zero, which allows us to estimate the nonlinear effects. These estimates, which

are expressed as coefficients for orthogonal polynomials,11 are then converted to deviations from

the grand (or overall) mean. We next fit the DRM and converted the estimated origin and destina-

tion effects into deviations orthogonal to their respective overall levels and linear components.12

Finally, for both models we calculated the estimated relative contributions of the origin and des-

tination nonlinear effects. Specifically, for each model and for each of the origin nonlinear effects

we calculated α̃i/(α̃i + β̃[j=i]), while for each of the destination nonlinear effects we calculated as

β̃j/(α̃[i=j] + β̃j). For example, the ith origin nonlinear effect is divided by the sum of the ith and

jth origin and destination nonlinear effects.

Table 3 highlights themain findings with respect to our evaluation of the validity of the propor-

tionality constraint. First, the nonlinear effects for origin and destination differ between the DRM

and L-ODM model, in some cases substantially. On balance, however, in all cases the direction of

the nonlinear effects is correctly captured by theDRM. Second, as shown in the second rowof Table

3, with the DRM all of the ratios are the same for the origin and destination nonlinear effects. This

reflects the fact that the estimated origin and destination weights for the DRM arewo = 0.361 and

wd = 0.639, respectively. Lastly, as shown in the bottom row of Table 3, the weights needed to

recover the actual nonlinear effects, as represented by the estimates using the L-ODMmodel, vary

considerably across origin and destination categories. This further suggests that the proportionality

constraint of the DRM is likely inappropriate in this case.

An additional issue is that even when the proportionality constraint of the nonlinear effects is
11Specifically, the coefficients for the L-ODM model with the destination slope fixed to zero are as follows: µ =

2.318, α = −0.300, α2 = 0.047, α3 = −0.020, α4 = 0.008, β2 = 0.058, β3 = 0.042, β4 = 0.031, γL = −0.208,
γ2 = −0.001, γ3 = 0.009, γ4 = 0.001, γ5 < 0.001, γ6 = −0.003, γ7 = 0.003, γ8 = −0.001.

12Specifically, regarding the origin deviations (or nonlinearities), we first calculated each origin overall effect by
multiplying the origin weight by the estimates of the main diagonal. Letααα denote an I×1 column vector of the DRM’s
origin effects andO an I×I matrix of a columnof 1’s and a set of (I−1) orthogonal polynomials. To obtain the distinct
linear and nonlinear effects as well as the contribution to the overall intercept, we calculatedααα⊥ = (OTO)−1OTααα.
We then dropped the parameters for the overall origin level and linear effect, giving us a columnvector α̃αα⊥ of dimension
(I−2)×1. Let Õdenote thematrixOwith the columnof 1’s and linear component dropped, such that it is of dimension
I× (I−2). As a final step, we calculated Õα̃αα⊥

= α̃αα, which resulted in an I×1 column vector of the DRM’s nonlinear
deviations.
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valid, the DRM can generate highly biased estimates of the underlying mobility linear effect. This

is the case even if the underlying mobility linear effect is extremely large. To show this, we conduct

simulations based on the DRM and fertility data. Specifically, we fit the DRM and calculate the

underlying estimated coefficients as linear and nonlinear effects, similar to the L-ODM. Then we

use these to set up the data generating parameters (DGP) in the simulations. Specifically, we first

fix the origin, destination, and mobility linear effects to the values assumed by the DRM, which

are α = −0.115, β = −0.203, and γ = −0.104. Then, we varied the values of mobility linear

effect from−1.000 to+1.000, while calculating values of the origin and destination linear effects

that are consistent with the original fertility data.13 The remaining data generating parameters are

given by µ = 2.3171, α2 = 0.0411, α3 = 0.0136, α4 = 0.0161, β2 = 0.0730, β3 = 0.0242,

β4 = 0.0285, γ2 = −0.0012, γ3 = −0.0074, γ4 = 0.0004, γ5 = 0.0027, γ6 = −0.0022,

γ7 = 0.0017, γ8 = −0.0008. In these simulations, like the Sobel data, we set the number of origin

and destination groups at I = 5 and J = 5, respectively. We also replicated each combination of

origin and destination (and accordingly mobility) groups so that number of individuals in each cell

is identical to that of the original data. This resulted accordingly in a total sample size ofR = 5, 958

for each simulation. For simplicity, and without loss of generality, we assume no random error.

The results from the simulations based on Sobel’s data are shown in Table 4. The table reveals

that the DRM fixes the mobility linear effect to a particular value, γ̂ = −0.010, even in cases in

which the mobility linear effect is quite large (either negative or positive). The shaded column in

Table 4 indicates that particular simulation in which the DRM recovers the true mobility linear

effect. The results from this table underscores that the DRM can generate results that are, to a great

degree, inconsistent with the true mobility effect. Note that in all simulated data sets the DRM

correctly recovers the underlying nonlinear effects. This is by construction, as we have purposely

created the data so that the DRM’s proportionality constraint on the nonlinear effects is valid.
13Using the DRM’s estimates, we first calculated the sum of the origin and destination linear effects as well as the

sum of the mobility and destination linear effects, both of which are identifiable. This gave us α + β = −0.317
and γ + β = −0.213. We then calculated the corresponding origin and destination linear effects using these sums.
Specifically, using theDRMestimates, the corresponding origin and destination linear effects for a givenmobility linear
effect γ are α = (α+ β)− (γ + β) + γ = −0.104 + γ and β = (γ + β)− γ = −0.213− γ.
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3. The Nature of the Bias from the DRM

In the previous example, why does the DRM fix the mobility slope to nearly zero even when the

mobility linear effect is quite large? When the underlying nonlinear effects obey the proportionality

constraint, the nature of the bias from the DRM can be expressed as a mathematical function of the

estimated weights. Specifically, assuming the true nonlinear effects conform to the proportionality

constraint (see Equations 9 and 10), the bias in the DRM’s estimated mobility linear effect can be

written as14

γ̂ = True Linear Effect+ Bias = γ + [β(ŵo)− α(ŵd)]. (13)

This equation clarifies that the DRM estimate will only be unbiased if β(ŵo) = α(ŵd). Because the

origin and destination linear effects are not identifiable from the data, this is a constraint that can

only be justified by appealing to sociological theory or substantive knowledge external to the data at

hand. In general, this equation clarifies that the bias in the estimatedmobility effect arises from two

main sources: first, the size and sign of the underlying linear effects α and β; second, the estimated

weights ŵo and ŵd, which are in turn affected by the size and sign of the nonlinear effects. Note

that if the origin and destination nonlinearities are zero, then the DRMwill fix wo = wd = 0.500.

To illustrate the sensitivity of theDRM,we first show the bias in themobility linear effect across

different values of the true origin and destination linear effects. In these simulations we set the

nonlinear effects to zero, so the DRM’s estimated origin and destination weights ŵo = 0.500 and

ŵd = 0.500, respectively. These results are shown in Table 5.15 The bias formula for the mobility

linear effect is displayed on the right half of the table, while the left half shows the true linear effects

as well as those produced by the DRM. The top half of the table displays the simulations for dif-

fering values of the origin linear effect while keeping the values of the other parameters in the data

generatingmodel the same. The shaded row indicates that particular simulation in which the DRM

recovers the true mobility linear effect. As can be seen from this table, the mobility linear effect is
14Likewise, again assuming that the proportionality constraint holds with respect to the nonlinear effects, the bias

of the estimated origin linear effect is given by α∗ = α + [(α + β)ŵd − β], and the bias of the estimated destination
linear effect is given by β∗ = β + [(α+ β)ŵo − α].

15By varying the size and sign of the true origin and destination linear effects, we are altering the trueweights needed
to recover the underlying origin and destination linear effects. The proportionality constraint is thus violated for the
linear effects. However, this does not affect the estimated weights of the DRM, which, as noted in the main text, simply
gives an estimated weight of 0.500 for both origin and destination when there are no underlying nonlinear effects.
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easily biased due to differing values of the origin linear effect. The bottom half of the table shows

a similar set of simulations, this time varying the values of the destination linear effect. Again, the

mobility linear effect is biased for all rows except that one which is shaded. In summary, the sim-

ulations in Table 5 show that, under plausible values of the data generating models, the DRM can

easily produce biased estimates of mobility effects.

The bias of the DRM’s estimated mobility linear effect depends not only on the true origin and

destination and linear effects, but also the underlying nonlinear effects. That is, because the bias for-

mula depends on the DRM’s estimated weights, the estimated mobility linear effect from a DRM is

in turn a function of the underlying nonlinear origin and destination effects.16 In Online Appendix

E, Table E.1 we present various results from simulations with various values of the nonlinear effects

for origin and destination. Together, these simulations reveal that the estimatedmobility effects are

quite sensitive to the true values of the nonlinear origin and destination effects.

In short, DRM relies on a specific proportionality constraint to identify unique origin, desti-

nation, and mobility effects in a mobility table. Unfortunately, because the linear effects are not

identified, the validity of this assumption can only be tested indirectly using the nonlinear effects.

Evenmore problematic, regardless of the size of the underlying linearmobility effect, the DRMwill

fix the linear effect to a very specific value. For example, as illustrated using Sobel’s (1981) fertil-

ity data, even if the mobility linear effect is extremely positive or negative, the DRM still fixes the

mobility linear effect close to zero. Finally, we have provided a simple bias formula for the mobility

linear, showing that the estimates from theDRMare sensitive to both the size and sign of the under-

lying origin and destination linear effects, as well as to the nonlinear effects. Taken together, these

results suggest that the DRM should not be used to identify the effects of social mobility unless its

very specific assumptions are strongly supported by sociological theory or background knowledge.

While the conventional DRM assumes fixed origin and destination weights, alternative specifi-

cations have been proposed that allow these weights to vary across the mobility table. Sobel (1985)

extended the model to permit weights to differ by either origin or destination class, while Weak-

liem (1992) further allowed weights to vary simultaneously by both origin and destination. These
16Note again that we are assuming that the underlying nonlinear effects conform to the proportionality constraints

shown in Equations 9 and 10. If the actual nonlinear effects do not conform to these constraints, then the bias formulas
are invalid as the nonlinear effects cannot be described by a single weight.
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extensions can accommodate more complex patterns of nonlinear effects in the data. Nevertheless,

a fundamental limitation persists: due to the inherent identification problem, these extended DRM

variants still impose specific constraints to identify unique linear effects of origin, destination, and

mobility. In essence, all DRM formulations, regardless of their flexibility in handling nonlineari-

ties, ultimately rely on point identification, requiring researchers to make highly specific and, as a

consequence, strong assumptions about themagnitude and direction of the linear effects. Crucially,

as we demonstrate in subsequent sections, the core assumptions of mobility effects models cannot

be directly tested against the empirical data, making any results contingent in a nontrivial way on

untestable modeling choices.

II. Generalizing Models of Mobility Effects

In this section, we show how previous generations of mobility effects models, such as the SAM and

the DRM, can be understood as special cases of a bounding analysis. We first present a visualization

of the identification problem at the core of mobility effects models, showing how the DRM and

SAM achieve point identification by imposing extremely strong assumptions on themagnitude and

direction of the linear effects. We then show how one can construct bounds on the linear effects

using a variety of other constraints that generally involvemuchweaker assumptions. It is important

to emphasize, however, that the results of any analysis of mobility effects are only as valid as the

social theory or substantive knowledge used to justify the bounds.

1. Point Identification and the Canonical Solution Line

To understand how the DRM, SAM, and related models can be viewed as special cases of a bound-

ing approach, it is crucial to recognize the geometric interpretation of the non-identifiability of

the linear effects. Because mobility effects models are not fully identified, we cannot obtain point

estimates for each of the origin, destination, and mobility linear effects (or effects that are partially

a function of the linear effects). A convenient way to express the identification problem is to note

that for any particular mobility effects model we can specify the slope as:17

17Following our previous discussion, we will assume without loss of generality that we have applied sum-to-zero
constraints.
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α∗ = α + ν, β∗ = β − ν, and γ∗ = γ + ν, (14)

where the asterisk (∗) indicates an arbitrary set of estimated slopes from a mobility effects model

under some particular constraint and ν is a scalar fixed to some value. As Equation 14 indicates, the

estimated parameters are simple transformations of the true unobserved slopes α, β, and γ shifted

by a single arbitrary scalar, ν . Importantly, selecting a value of the scalar ν is equivalent to specifying

a particular constraint to identify a mobility effects model.

By varying values of ν (which can take on any value), we trace out what has been called the

canonical solution line in a parameter space defined by the range of possible origin, destination, and

mobility slopes (Fosse and Winship 2018, 2019b). It is a “solution” line because any set of possible

estimates of the linear effects will lie on this line, and it is “canonical” because it is the simplest

possible geometric representation of the identification problem.18 Note that, if a mobility effects

model were identified, then there would be not a line but a single point in the parameter space.

Figure 2 shows the canonical solution line based on the Sobel (1981) fertility data.19 With So-

bel’s fertility data, Γ̂1 = −0.317 and Γ̂2 = −0.213. Several crucial points are worth emphasizing

regarding this figure. First, in the absence of data from a mobility table and a corresponding mo-

bility effects model, the origin, destination, and mobility slopes may take on any combination of

values in a three-dimensional parameter space. With a mobility effects model, vast areas of the pa-

rameter space can be ruled as inconsistent with the data. However, as we discuss later, this does

not mean that quite strong assumptions are necessary for identifying unique mobility effects. Sec-

ond, depending on the data, the location of the canonical solution line relative to the origin will

differ, leading to different trade-offs from setting various constraints. Specifically, the location of

the canonical solution line is a function of the parameters Γ1 = α + β and Γ2 = γ + β. With So-
18More specifically, given a linear dependency amongorigin, destination, andmobility, other designmatrices, such as

those based on treatment, sum-to-zero deviation, orHelmert contrasts, will have a solution line lying in a q-dimensional
parameter space, where q is greater than three. However, as Fosse and Winship (2018) show, one can construct a
transformation matrix that will convert the solution line of any particular design matrix into a canonical form that lies
in just three dimensions defined by the range of possible parameter values for origin, destination, and mobility.

19To keep our findings consistent with the previous discussion on the DRM, which assumes that the true nonlinear
effects conform to the proportionality constraint, we will use the simulated Sobel (1981) data. Our main conclusions
hold for actual data, except that, because theDRM’s proportionality constraint is violated, the linear effects generated by
the DRMwill not lie exactly on the canonical solution line (see Figure 3). For the remainder of the article, for simplicity
we will refer to Sobel’s data, but this specific usage should be kept in mind.
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bel’s fertility data, these values are Γ̂1 = −0.317 and Γ̂2 = −0.213. Note that these parameters are

identified (as well as their difference) because the scalar ν in Equation 14 cancels out. For example,

α∗ + β∗ = α + ν + β − ν = Γ1.20 Finally, because the canonical solution line is a function of

just two parameters (Γ1 and Γ2), we can reduce our three-dimensional representation to just two

dimensions. One way of doing this is by having the horizontal axis represent the destination slope,

the left vertical axis the origin slope, and the right vertical axis the mobility slope (see Fosse and

Winship 2018).

Figure 3 shows a two-dimensional representation of the canonical solution line shown in Figure

2, again using Sobel’s (1981) fertility data. As in Figure 2, this line is based on values of Γ̂1 = −0.317

and Γ̂2 = −0.213. It is important to note that the solution line shown in Figure 3 is identical to the

one shown in Figure 2. Each location in the coordinate space can be referenced in terms of the ori-

gin, destination, andmobility linear effects, so that, for example, the point (−0.167,−0.150,−.063)

refers to α = −0.167, β = −0.150, and γ = −0.063.21 The solution line will always run from top

left to bottom right, and the slope of the solution line relating destination to origin andmobility will

always be−1. Not all features of the solution line, however, are invariant. As noted above, the val-

ues of Γ1 and Γ2 determine two crucial features of the canonical solution line. First, the difference

between Γ2 and Γ1, estimated to be 0.104 in Figure 3, determines the offset between the origin and

mobility scales. Thus, in Figure 3, when γ = 0, α = −0.104. Second, at the point where β = 0, Γ1

and Γ2, respectively, determine the location of the canonical solution line with respect to α and γ.

Various traditional mobility effects models can be located on the solution line in Figure 2, and can

be understood as making very specific assumptions about the underlying origin, destination, and

mobility linear effects.

Three estimates are displayed in Figure 3. First, as shown by the blue triangle in Figure 3, there

is the set of estimates corresponding to Duncan’s SAM. As noted previously, the SAM’s estimates

are equivalent to assuming that the mobility linear effect is zero (i.e., γ = 0).22 Second, there are
20More generally, for any arbitrary pair of real numbers (p, q), the linear function pα + (p + q)β + qγ can be

estimated from the data. To see this, note that pα∗ + (p+ q)β∗ + qγ∗ = p(α+ v) + (p+ q)(β − v) + q(γ + v) =
pα+ pv + pβ − pv + qβ − qv + qγ + qv = pα+ (p+ q)β + qγ.

21This assumes that this particular point reflects the underlying origin, destination, and mobility linear effects. One
could refer to the location more generally as α∗, β∗, and γ∗, which reflects a set of constrained values that is not
necessarily equal to the true, underlying linear effects.

22Note, however, that in practice the SAM will not exactly equal a zero linear effect because of some bias due to
the exclusion of the mobility nonlinear effects from the model (for details, see Equation C.11 in Online Appendix C).
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the estimates for the DRM, as shown by the green circle in Figure 3. As noted previously, assuming

that the nonlinear effects satisfy the proportionality constraint, the mobility linear effect is fixed

to (Γ2 − Γ1) + Γ1wo or, equivalently, γ = Γ2 − Γ1wd, where again wo and wd are the origin

and destination weights, with wd = 1 − wo. In the case of Sobel’s fertility data, assuming the

proportionality constraint is valid for the nonlinear effects, then the DRM will fix the mobility

linear effect to−0.010 (see Table 4).23

The DRM and the SAM have traditionally been the most popular ways of point identifying

mobility effects, but these are not the only options. Making any assumption about the sign and

size of one of the three linear effects is sufficient to point identify the remaining two linear effects.

Thus, for example, one might assume that the origin linear effect is zero, or that the destination

linear effect is some specific negative value. One particularly attractive approach is to use what

we call the same-slopes assumption. Presumably, origin and destination effects reflect similar, if not

identical, underlying causal processes. Accordingly, in some contexts it might be reasonable, at

least as a first pass, to assume that the origin and destination linear effects are the same, such that

they have the same direction and magnitude. In other words, we might assume that origin and

destination linear effects are the same such that α = β. This will then provide an estimate of the

underlying linear mobility effect, or γ. This constraint is easily derived from the data. Because

Γ1 = α + β is identified, under the same slopes assumption we know that α = Γ1/2 and β =

Γ1/2. We also know that Γ2 = γ + β, so plugging in for β = Γ1/2 and rearranging terms we

have γ̂ = Γ2 − Γ1/2. This is the mobility linear effect under the same-slope assumption. Figure

3 shows the point estimates under the same-slope assumption as a red square. Under the same-

slopes assumption, the parameter Γ1 is split equally between origin and destination. With Sobel’s

fertility data, Γ̂1 = −0.317 and Γ̂2 = −0.213. Thus, given the same-slopes assumption, we have

α̂ = −0.159 and β̂ = −0.159 and, accordingly, γ̂ = −0.055.

Each of these three estimates of the mobility linear effects correspond to different patterns of

overall mobility effects, which incorporate the nonlinearities. Figure 4 shows the estimated mo-

Because of this bias, in some cases the SAM’s estimates may not lie exactly on the canonical solution line. An alternative
is to fit the Diff-SI model (see Equation C.2 inOnline Appendix C). Under the assumption that themobility linear effect
is zero, the slope parameters for origin and destination will be similar to those of the SAM but without the bias that
results from excluding the mobility nonlinear effects.

23However, if the proportionality constraint is not satisfied with respect to the nonlinear effects, then the DRM’s
estimates may not lie exactly on the canonical solution line.
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bility effects using the three identification strategies discussed above. The main conclusion is that

both the DRM and the SAM, as indicated by the blue and green lines in Figure 4, are broadly con-

sistent with no meaningful pattern of mobility effects, apart from the up-and-down pattern of the

nonlinear effects. By contrast, the assumption of equal origin and destination slopes yields an over-

all negative effect of social mobility on fertility, as indicated by the red line in Figure 4. That is,

downward (or upward) social mobility causes households to have fewer (or more) children.

The results in Figure 4 are compelling, but great caution iswarranted. Only the nonlinear effects

in Figure 4 are identified, while the linear effects are a function of the particular model employed,

which encodes very specific assumptions about the size and sign of the linear effects. Because there

is an infinite number of possible linear effects that are consistent with the data, there is also an

infinite number of possible results that could be derived by applying any of a variety of mobility

effects model (including those that have not yet been devised). For example, constructing a model

that assumes that the origin linear effect is very negativewill result in a very negativemobility linear

effect, and thus a steep downward pattern in Figure 4. Conversely, using a model that assumes the

origin linear effect is positive will result in a very positive mobility linear effect and, accordingly, a

steep upward pattern in Figure 4. The extreme sensitivity of mobility effects models to the results

obtained has not been generally appreciated in the literature. It should also be emphasized that

the conventional mobility effects models rely on point identification, which requires invoking very

specific and extremely strong assumptions that are not directly testable against the data. In the next

section, we outline a number of identification strategies that involve weaker assumptions, albeit at

the potential expense of the precision of the estimates.

2. Partial Identification with Bounding Analyses

Conventionalmodels ofmobility effects, as outlined above, are based on point identification, where

the true parameter is uniquely estimated from the data given the specification of a particularmodel.

Unfortunately, in the case of mobility effects, point identification depends crucially on the model

(or, equivalently, on assumptions about the linear effects). As we have shown, different models (or

different assumptions) lead to different estimates of mobility effects. A more principled approach

is to abandon point identification in favor of partial identification. Rather than trying to extract a
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single estimate of a linear mobility effect, one uses (potentially weaker) assumptions to generate a

range of estimates, thus partially identifying (or bounding) the mobility effect.

In the case of point identification, fixing the values of one of the slopes determines the values

of the other two. For example, assuming that the mobility linear effect is zero, as is the case with

the SAM, will fix the values of the origin and destination linear effects. Similarly, setting upper and

lower bounds on the magnitude and direction of any one of the linear effects will automatically

set bounds on the size and sign of the remaining two linear effects. Likewise, setting the sign of

any two linear effects will establish bounds on the size and sign of the remaining linear effect.24

These two strategies for specifying bounds are based only on assumptions about themagnitude and

direction of the underlying linear effects. However, a third strategy, which may entail even weaker

assumptions, is to use the nonlinear effects to make assumptions about the shape of one or more

of the effects over a particular range of the data. For example, one might assume that the pattern

of destination effects is monotonically increasing, decreasing, or neither increasing nor decreasing

for some (possibly restricted) set of destination categories. These assumptions will, in turn, place

constraints on the underlying linear effects.25 Finally, as Manski (1990, 2003) already pointed out

in his seminal work on partial identification, there is a direct trade-off between the strength of one’s

assumptions and the width of the bounds on the parameters. While, in some applications, analysts

may bemoan the width of the bounds to be too large to be analytically useful, wide bounds merely

demonstrate thatmuch stronger theoretical assumptions are required if the analyst seeks to usefully

interpret a given estimate.

To illustrate how one might proceed with a bounding analysis of mobility effects, we outline

three main partial identification strategies. First, there is what we call the same sign assumption.
24Formulas for setting bounds on the size and sign of one slope, as well as setting the sign of two linear slopes, are

shown in Tables A.1 and A.2, respectively, in Online Appendix A.
25For example, suppose that we have strong theoretical reasons to believe that the overall destination effect is mono-

tonically increasing. Our task, then, is to specify a value for the destination linear effect that ensures that the total effect
(which includes the nonlinear effects in addition to the linear effect) is monotonically increasing. This implies that be-
tween any two adjacent destination categories, the pattern of effects is either flat or increasing (but not decreasing). To
determine the minimum slope needed for a monotonically increasing set of effects, we simply find the pair of adjacent
destination categories for which the downward pattern is most negative. For example, suppose the forward differences
for the destination nonlinearities are ∆β̃I−1 = {1, 3,−1,−1,−2, 1.5,−1.5}. The minimum of these differences
is −2. To counteract this downward deviation, the parameter value for the destination slope must be greater than or
equal to+2 so as to ensure that the overall pattern is monotonically increasing. Similarly, one can derive slopes based
on the assumption that the overall pattern of effects is monotonically increasing or neither monotonically increasing
nor decreasing over some range of the data (for examples, see Fosse and Winship 2019b; Gowen et al. 2023).

21



Rather than assuming that the origin and destination linear effects have the same magnitude and

direction, as with the same-slopes assumption, in some settings it might be appealing to assume that

origin and destination have the same sign but not necessarily the same size. The justification for

this assumption is similar to that for the same-slopes assumption, namely, that the causal processes

proxied by class origin and destination are similar, if not identical.

The constraints implied by the same sign assumption are easily calculated from the data. Be-

cause Γ1 = α + β is identified, under this assumption we know that α and β each range from 0

(lower bound) to Γ1 (upper bound). We also know that Γ2 = γ+β, so plugging in for β = 0 (lower

bound) and β = Γ1 we have γ̂ = (Γ2 − Γ1,Γ2). In the case of Sobel’s fertility data, the same-sign

assumption results in bounds of α̂ = (−0.312, 0), β̂ = (−0.312, 0), and γ̂ = (−0.213, 0.104).

These bounds and the resultant set of estimates on the canonical solution line are shown in panel

(a) of Figure 5. The red rectangle indicates the range of estimates compatible with the assumption

about the origin slope, while the blue rectangle denotes the set of estimates compatible with the

assumption about the destination slope. Their intersection on the canonical solution line, which

shows the set of estimates compatible with the data, is shown as a bold line. Unfortunately, in this

particular case these bounds are not particularly informative, as the slope for the mobility linear ef-

fect may be both positive, zero, or negative. This is evident in Figure 6(a), which shows the resultant

overall mobility effects under the same-sign assumption,

A second strategy that onemight employwithmobility data is what we call themonotonic origin-

destination effects assumption. The idea here is that, again to the extent that origin and destination can

be understood as having similar underlying causal processes, we might assume not only that both

of their linear effects have the same sign, but that that one or both of the effects are monotonically

increasing (if Γ1 is positive) or monotonically decreasing (if Γ1 is negative).

Some care iswarranted, however, in calculating underlying linear effects based onmonotonicity

constraints. In many if not all cases, one might believe that the origin and destination nonlinear

effects capture, at least in part, some amount of random error. Applying monotonicity constraints

in such circumstances may thus be misleading. An alternative, which we use here, is to calculate

the monotonicity constraints based only on some restricted set of higher-order terms, such as only

quadratic component or only the quadratic and cubic components. In other words, the effect is
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assumed to bemonotonic onlywith respect to these lower-order terms, while nonlinear effectsmay

themselves be monotonically increasing, randomly fluctuating, or monotonically decreasing.26 For

Sobel’s fertility data, we calculate themonotonicity constraints using only the quadratic component,

but substantively similar findings were obtained using higher-order terms.27

Based on the quadratic linear component, the maximum possible slope for a monotonically de-

creasing origin effect is −0.123, so we specify bounds on the origin linear effect as α̂ = (−∞,

−0.123). For the destination linear effect, we keep the assumption that the slope is negative, such

that β̂ = (−∞, 0).28 Combined, these bounds result in a mobility linear effect of γ̂ = (−0.206,

−0.026). The bounds for the linear effects, as well as that part of the solution line consistent with

these bounds, are shown in panel (b) of Figure 5. The overall mobility effects, which incorporate the

(identified) mobility nonlinear terms, are shown in Figure 6(b)). Given these assumptions, down-

ward (or upward) mobility causes households to have many fewer (or more) children. Specifically,

those who the most upwardly mobile (+4) have approximately 1.11 fewer children than those who

are the most downwardly mobile (−4).

So far we have employed two approaches to partially identifying mobility effects, one based on

the same-sign assumption and another based on monotonically decreasing origin and/or destina-

tion effects. A third approach is to invoke the assumption of monotonically decreasing effects, but

to do so for some restricted range of class categories. For example, suppose we assume that fertility

rates across class origin categories aremonotonically decreasing, but only those classes lower in the

hierarchy (1, 2, and 3). This assumption aligns with the claim that fertility may decline consistently

across individuals from lower class origins, as even modest differences in resources, education,

health care, and family planning may significantly shape reproductive strategies. However, for in-
26An alternative approach is to adopt a fully Bayesian approach and “smooth” the data by using very strong priors

on the higher-order polynomials, effectively shrinking them to zero, or nearly so. For an example, see Fosse (2021).
27Specifically, the bounds on the canonical solution line using all higher-order terms are narrower than those based

only on the quadratic component and, as a consequence, the bounds on the overall mobility effects are also narrower.
This is likely unrealistic, as we expect some of these higher-order nonlinear effects to be noise.

28If we assume that the destination effect is monotonically decreasing with respect to its quadratic component, then
itsmaximum slope is−0.219. As a result, assuming that both the origin and destination linear effects aremonotonically
decreasing with respect to the quadratic component is incompatible with the data, as there is no part of the canonical
solution line that is consistent with the assumptions that α̂ = (−∞,−0.123) and β̂ = (−∞,−0.219). In other
words, any theory that makes the claim that the effects of both origin and destination are monotonically decreasing
with the quadratic component can be shown to be false. This is not an artifact of just using the quadratic component in
calculating the monotonicity constraints. Additional analyses reveal that with the full set of nonlinear effects, the data
are inconsistent with the assumption that class origin and destination are both monotonically decreasing.
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dividuals from middle class origins or higher, the primary determinants of lower fertility might be

largely satisfied, resulting in stabilized fertility levels across these class groups, or at least fertility

levels that are not monotonically decreasing.

The assumption that fertility ismonotonically decreasing, but only across class origin categories

lower in the hierarchy, results in a maximum possible origin slope of −0.0922. Accordingly, we

specify the bounds on the origin linear effect as α̂ = (−∞, −0.0922). For the destination linear

effect, we again keep the assumption that the slope is negative, such that β̂ = (−∞, 0). Together,

these bounds yield a mobility linear effect of γ̂ = (−0.206,−0.004). The bounds for the linear

effects, as well as that part of the solution line consistent with these bounds, are shown in panel (c)

of Figure 5, while the overall mobility effects are shown in Figure 6(c). Under these assumptions,

we arrive at qualitatively the same conclusions as in Figures 5(b) and 6(b). That is, we can conclude

that those who the most upwardly mobile (+4) have approximately 0.99 fewer children than those

who are the most downwardly mobile (−4).

Alternatively, suppose we assume that fertility rates across class origin categories are mono-

tonically decreasing, but only those classes higher in the hierarchy (3, 4, and 5). This assumption

is consistent with the claim that fertility differences are most pronounced among individuals from

higher class origins, as distinctions in economic resources, aspirations, and family formation norms

become increasingly influential at higher class origin positions. By contrast, among lower class ori-

gins, fertility rates may already reflect uniformly constrained resources and limited opportunities,

resulting in less variation in fertility across these categories. The assumption that fertility is mono-

tonically decreasing, but only across class origin categories higher in the hierarchy, yields a max-

imum possible origin slope of −0.244 and thus bounds on the origin linear effect of α̂ = (−∞,

−0.244). As in the prior examples, for the destination linear effect we assume that the slope is

negative, such that β̂ = (−∞, 0). These bounds together result in a mobility linear effect of

γ̂ = (−0.206,−0.146). Figure 5 (d) shows the bounds on the linear effects, including that sec-

tion of the solution line that is consistent with these bounds. The overall mobility effects are shown

in Figure 6(d), which have quite narrow lower and upper bounds. Themain conclusion, in line with

the results in panels (b) and (c), is that downward mobility has a strong negative effect on fertility.

Specifically, we can conclude that those who the most upwardly mobile (+4) have about 1.59 fewer
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children than those who are the most downwardly mobile (−4).

The above approaches to identifying mobility effects employ much weaker assumptions than

conventional models, such as the DRM and SAM, which rely on point identification. This is not

to imply that these assumptions are not very strong, however.29 In many applications, theories or

additional information about the underlying causal processes may be quite ambiguous, precluding

any practical guidance on how to set bounds on the effects. Moreover, even when one believes that

theory or background information provides useful guidance on how to set the bounds, it is abso-

lutely critical to understand that the results are by definition extremely sensitive to the assump-

tions invoked. This means that any analysis that attempts to identify unique effects of mobility is

inherently provisional, and thus should always be presented transparently, clearly specifying the

assumptions invoked and explicitly discussing the tentative nature of the conclusions. As we have

shown, this is facilitated by parameterizing the model so that the unidentified part is separate from

the unidentified part, as we have done with the L-ODMmodel.

Finally, it is worth underscoring that even if one believes that the true effects have been iden-

tified, there are additional and serious complications with treating such effects as “causal” in any

meaningful sense. As Zang, Sobel, and Luo (2023) have recently emphasized, it is important to rec-

ognize that theDRMand relatedmodelswere developed in a historical context that largely predated

modern frameworks for causal inference. While these techniques represented innovative solutions

to themethodological challenges of their time, they now face significant limitationswhen evaluated

against contemporary standards for causal identification. InOnline Appendix F, we outline in detail

these issues regarding parallel-world counterfactuals, the consistency assumption, the assumption

of no confounding given composite exposures, and complications that arise due to the fact that mo-

bility is likely an exposure-induced confounder. These difficulties mean that even if the underlying

bundles of mechanisms for origin, destination, and mobility could somehow be observed, there

remain substantial barriers to interpreting estimated parameters as causal effects. These problems
29The substantive utility of the bounding approach, even with potentially wide bounds, is considerable. It improves

methodological transparency by requiring explicit statement and justification of identifying assumptions, unlikemeth-
ods where strong assumptions might be implicit or untestable. It also accurately reflects the range of conclusions sup-
portable by the data under relatively weaker, theory-driven constraints, thus avoiding the potentially false precision of
point estimates. Furthermore, the canonical solution line itself delineates all linear effect combinations consistent with
the data, thus falsifying any combination not lying upon it. Finally, the specific identified set derived from bounding
assumptions allows for the potential falsification of theoretical claims or previously reported point estimates if they fall
outside the established bounds.
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apply not only to theDRMand SAMbut also tomethods using bounds to partially identify effects.30

III. Paradigm Shift: Towards a Positional Sociology of Social Mobility

The prior sections have critically assessed the DRM and the general challenges for the identifica-

tion of independent origin, destination, and mobility effects. Taken together, we believe that the

problems identified call for a fundamentally new direction in the analysis of the consequences of

social mobility. We now begin to outline what we consider a particularly promising way forward.

To be clear, this entails a re-framing of the analytic question. But, in words typically ascribed to

Charles Kettering, “a problem well stated is a problem half solved.”

The alternative framework for analyzing social mobility that we propose in this section is based

on the concept of positional sociology (Fosse and Pfeffer 2023). This approach differentiates be-

tween two distinct forms of inequality: (1) structural inequalities, associated with stable positions

within the social hierarchy, and (2) dynamic inequalities, arising from movements between social

positions. Building on this distinction, we introduce the Structural and Dynamic Inequality (SDI)

model, which extends the L-ODM model by explicitly re-indexing parameters according to social

origin and mobility status. The result is a fully identified model with clearly interpretable param-

eters that effectively capture both types of inequality. As we go on to show, this method enables a

decomposition of population-level variation within mobility tables, leading to highly informative

sets of parametric expressions and visualizations.

Our approach broadly aligns with recent contributions by Zang, Sobel, and Luo (2023) and

Breen and Ermisch (2024). Like us, these authors emphasize challenges in isolating uniquemobility

effects and suggest alternative conceptualizations of socialmobility. Specifically, they conceptualize

class destinations as “treatments" whose effects vary across origin categories. However, we adopt a

model that, while fully identified, nonetheless leverages the distinct, identifiable components of ori-

gin, destination, and mobility. Furthermore, and more importantly, our framework diverges from

their approach by explicitly emphasizing mobility as a positional dimension rather than as a varia-

tion in destination treatment effects. Consequently, our primary objective is to use the SDI model

to systematically dissect mobility tables into their constituent structural and dynamic inequalities,
30For a critique of an alternative approach to estimate mobility effects also see (Zhou/Song, in this issue).

26



thereby highlighting the inequalities experienced by distinct social groups.31

1. Mobility as a Metric of Positionality

In contrast to conventional models of mobility effects, what we term “positional sociology” takes

a distinctly different approach to the deterministic relationship between origin, destination, and

mobility (Fosse and Pfeffer 2023). Whereas conventional models regard this relationship as an ob-

stacle to be overcome, positional sociology embraces it as a natural observational fact, recognizing

that origin, destination, and mobility are interrelated dimensions that locate positions in an ob-

served social space, rather than as proxies for distinct bundles of causal mechanisms that must be

separated. Positional variables are not themselves causal, but are axes along which variation is ob-

served. Treating them as causal in of themselves is a fundamental “category mistake” (e.g., see Ryle

1959).

Suppose, for example, that an individual from a given class origin group moves up the social

hierarchy and reaches a new class destination. Reaching this new position in the social structure is

observed conjointly with the degree of social mobility. From this perspective, social mobility as a

dimension of positionality can never be completely separated from class destination, nor should it

be, because social mobility is experienced in the context of class destination rather than indepen-

dently of it.32 However, treating class, origin, and mobility as dimensions of social position rather

than as surrogates for underlying causal factors does not mean that positional sociology does not

involve the study of causal processes; far from it. Rather, the causal factors are distinct and separate

from the dimensions of social position, which describe the observed locations of individuals and

other groups in an observed multidimensional social space.33

31Although our primary application of the SDI model focuses on summarizing structural and dynamic inequalities,
the model’s parameters can also be interpreted causally under conventional assumptions. Rather than identifying iso-
lated effects of each dimension entirely, the SDI model identifies joint effects. For instance, instead of isolating the
unique effect of origin alone, our model identifies the combined effect of origin and destination; similarly, rather than
isolating mobility effects alone, it identifies the joint effect of mobility status and destination. It is important to em-
phasize, however, that identifying these joint causal effects necessitates standard but quite strong assumptions, notably
those related to consistency and the absence of unobserved confounding.

32For a formal treatment of the identification problem discussed here, see Online Appendix B.
33To reiterate, in the following sections we focus on estimating joint sets of parameters. These can be treated as

descriptive quantities, or, if stronger assumptions about consistency and unconfoundedness are invoked, as joint causal
effects, which, as a careful inspection of Figure F.2will show, are identified (assuming the validity of an additivemodel of
the underlying causal factors). An alternative perspective, more in line with positional sociology, is that these quantities
represent descriptive quantities, but can be informally treated as “causal” using a decomposition analysis (see, e.g., Fosse
and Winship 2019a; Jackson and VanderWeele 2018).
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Given this epistemology, a key question is: how exactly should we describe population-level

variability using information from a mobility table? There are six logically possible ways, as shown

in Table 6. Let f(.) denote some generic function and, as before, let O, D, andM denote the ob-

served origin, destination, and mobility dimensions on a mobility table. We can then describe vari-

ability withmodels of the form f(O), f(D), f(M), or withmodels of the form f(O,D), f(O,M),

f(D,M). For example, researchers often describe differences by class destination (e.g., Goldthorpe

1999), which corresponds to a function of the form f(D). Duncan’s SAM can be re-interpreted as

a model that does not attempt to extract unique origin, destination, and mobility effects, but rather

as an f(O,D)model that attempts to describe the surface of a mobility table (see also Online Ap-

pendix B).

Among these various generic models for summarizing population-level variability in amobility

table, we have a strong preference formodels of the form f(D) and f(O,M), which are shaded gray

in Table 6. The reason is thatmodels based on the other functions, although quite common, conflate

structural with dynamic inequalities and thus fail to distinguish social structure, or the “map of

locations,” from social mobility, or “movements from one location to another” (Fosse 2023).34 We

elaborate this view below. We also refer the reader to Online Appendix C, which contains detailed

mathematical formulas outlining the limitations of the other models shown in Table 6.

Consider first a model of the form Y = f(O,M) + ϵ, where ϵ is a normally distributed error

term with a mean of zero. For some summary outcome Y observed in a given class destination

D = O +M , what we will refer to as social mobility analysis is focused on examining models of

the form Y = f(O,M) + ϵ. Conditional onM , variability in Y across levels of class origin O

(and thus also D) reveals a social structure differential, or structural inequality. This represents

the “map of locations” with respect to the outcome being examined. Conversely, conditional on

O, variability in Y across levels of class mobility M (and thus also D) reveals a social mobility

gradient, or a dynamic inequality. This represents, for a given class origin, how the outcome is

related to “movements from one location to another.” In summary, social mobility analysis as we

have defined it here is concerned with distinguishing between observed differences with respect
34This definition is identical to that offered byNorman Ryder in his unpublished writings. As noted by Fosse (2023),

Ryder viewed social structure as a “map of locations” in which individuals (and cohorts) are embedded, while a social
process, of which social mobility is a type, is “the aggregate version of movements from one location to another” (5).
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to the social structure and social mobility, rather than with identifying unique “effects” of origin,

destination, and mobility.

It is crucial to understand that social mobility analysis is distinct from any analysis using mod-

els of the form Y = f(O,D) + ϵ or Y = f(D,M) + ϵ. The reason is that conditioning on class

destination conflates variations in social structure with variations in social mobility. For example,

suppose we attempt to describe a mobility table using a f(O,D) function, such as Duncan’s SAM

(without assuming that the estimates represent unique causal effects). Conditional on class destina-

tion (D), variations in class origin (O) will compare different origin groups with distinctly different

mobility levels, producing a descriptive pattern that captures neither differences in social structure

nor social mobility, but a heterogeneous mixture of the two.35 It is only in the complete absence of

social mobility that variations in class origin conditional on class destination will provide mean-

ingful estimates of sociostructural differences.36

Likewise, suppose we attempt to specify a model based on a function f(D,M). Conditional

on class destination (D), variations across mobility levels (M ) will compare groups with distinctly

different class origins and mobility levels. Importantly, these estimates will not reflect a social pro-

cess that any group of individuals will ever experience, and instead conflates sociostructural differ-

ences with the social mobility gradient.37 Similar to the origin-destination model, the destination-

mobility model will give meaningful estimates of variability with respect to social mobility only in

the absence of sociostructural differences.38

Our approach is also distinct from one-factor models of the form f(O), f(D), and f(M). As

we show in Online Appendix C, each of these models can be understood as reflecting underlying

differences in the social structure as well as social mobility. For example, a model with just class

destination is essentially differences in social structure and social mobility, but weighted by the as-

sociations between class destinationwith class origin andmobility, respectively. Among these three

general class of models, as noted above, our preference is for models that include just class destina-

tion. The reason is that models with just class origin or class mobility are a weighted combination
35Note, however, that variations in class destination conditional on class origin will generally produce meaningful

information about social mobility, although indexed by class destination rather than mobility levels.
36Note that this assumption can be tested against the data (see Online Appendix C for details).
37Note again that variations in class destination conditional on class mobility will provide meaningful information

about social structure, but indexed by class destination rather than class origin.
38This, again, is an assumption that can be tested against the data.
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of variability with respect to either social structure or social mobility, along with a set of intra-

destination differences. Again, these models conflate sociostructural differences with processes of

social mobility. An additional advantage of models of the form f(D) is that there is a simple way

to decompose the aggregate class destination gap into a part attributable to the social structure and

a part attributable to social mobility, as we outline below.

The injunction to use functions of the form f(O,M) and f(D) to examine the structural and

dynamic inequalities in a mobility table is quite general, and in principle any number of modeling

approaches could be used. In the next sectionwe introduce a particularly useful model for conduct-

ing a social mobility analysis. As we show, this model parsimoniously provides a number of highly

informative summaries about the nature and extent of observed differences with respect to both the

social structure and social mobility. Moreover, this model extends quite straightforwardly to more

complex settings, such as those that involve multiple time points and/or continuous measures.

2. The Structural and Dynamic Inequality Model

To examine differences with respect to social structure and social mobility, we introduce what we

call the Structural and Dynamic Inequality Model, or, for short, the SDI model. This model is derived

by taking the L-ODM model, substituting destination with origin and mobility, and rearranging

the terms. The result is a fully-identified model, expressed in terms of the origin, destination, and

mobility parameters, with the following general form:

µrijk = f(O,M) + ϵ = µ+ Γ1(i− i∗) + Γ2(k − k∗) + α̃i + β̃[i+k−I] + γ̃k + ηi[i+k−I]k + ξri[i+k−I]k, (15)

where the asterisks denote midpoint or referent indices i∗ = (I + 1)/2, j∗ = (J + 1)/2, and

k∗ = (K+1)/2; where Γ1 = α+β and Γ2 = γ+β; α̃, β̃, and γ̃ represent the origin, destination,

and mobility nonlinearities, respectively; ηi[i+k−I]k is an additional (orthogonal) term denoting in-

teractions; and ξri[i+k−I]k is a normally distributed individual-level error termwith a mean of zero.

Note that, by substituting the destination indices with the sum of the origin and mobility indices

(that is, j = i+k−I and J = K−I+1), the outcome is only a function of class origin, indexed by

i, with corresponding parameters representing differences with respect to the social structure, and

mobility, indexed by k, with corresponding parameters representing differences with respect to so-
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cial mobility. Crucially, this model is identified (i.e., the design matrix is of full rank) as it does not

contain a separate linear term for destination, which is instead absorbed into linear terms indexed

by origin and mobility.39

Somewhat remarkably, Equation 15 encompasses a great deal of information about the under-

lying structural and dynamic inequalities in a mobility table. Accordingly, a large number of para-

metric expressions can be derived from the model. Among the most useful for describing the main

patterns in a mobility table are those discussed and visualized in the remaining sections: the Social

Structure Matrix and Social Mobility Matrix, the Social Structure Slope and the Social Mobility Slope,

Social Structure and Social Mobility Curves, and Comparative Mobility Curves. In Online Appendix G,

we include a full list of expressions that can be derived from the SDImodel (Table G.1) and illustrate

the analytic use of one additional expression (Marginal Class Destination Curve).

3. The Social Structure and Mobility Matrices

The SDI model allows us to decompose the overall pattern observed in a mobility table into two

distinct underlying matrix-based components. This decomposition helps separate inequalities as-

sociated with social positions from those associated with movement between these positions. First,

we can extract the social structurematrix. Thismatrix reflects the joint origin-destinationparameters

from the SDImodel and is calculated as: µ̂ijk = µ+Γ1(i−i∗)+α̃i+β̃[i+k−I]. Thismatrix isolates the

component of inequality related to the combination of starting position (origin) and ending position

(destination), effectively representing the patterns associated purely with the social structure itself.

Second, we can extract the social mobility matrix. This matrix reflects the joint mobility-destination

parameters from the SDI model, calculated as: µ̂ijk = µ+Γ2(k− k∗) + γ̃k + β̃[i+k−I] This matrix

captures the component of inequality related to the experience of mobility (the movement itself) in

conjunction with the destination reached, representing the dynamic aspect of inequality.
39The SDImodel can be estimated using a designmatrix similar to that of the L-ODMmodel, butwith the destination

linear component dropped. Several characteristics of its structure are pertinent: (1) the model inherently incorporates
nonlinearities for origin, destination, andmobility; (2) although additive in its form (see Equation 15), the SDImodel, as
noted previously, exhibits an “interactive” characteristic in practice, as destination nonlinearities, for example, manifest
at different mobility levels for different origin groups, thereby functioning as structured origin-mobility interactions;
and (3) the cell-specific error term can be interpreted as capturing additional higher-level interactions orthogonal to
the main specified terms, the modeling of which is further detailed in Online Appendix B. More generally, the SDI
framework can also be modified to model interactions more explicitly. With categorical data, for example, destina-
tion nonlinearities can be replaced by specified origin-mobility interactions using orthogonal polynomials, while with
continuous variables, one can model origin-mobility interactions using tensor products of smooth functions.
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Figure 7 provides a visualization of these components of a mobility table using Sobel’s (1981)

fertility data. Panels (a) and (b) display the overall predicted fertility values from the main parame-

ters of the SDImodel in 2D and 3D, respectively, showing the combined influence of social structure

and social mobility. Panel (c) presents the social structure matrix, illustrating how predicted fertility

varies according to the joint combination of origin and destination positions, thereby highlighting

structural inequalities. Panel (d) displays the social mobility matrix, showing how predicted fertil-

ity varies based on the joint combination of mobility experience and class destination, highlighting

dynamic inequalities. Comparing panels (c) and (d) visually separates the relative contributions of

structural and dynamic inequalities to the fertility patterns. The social structurematrix (panel c) ex-

hibits marked gradients, especially the trend towards lower fertility with higher origin-destination

status, suggesting a prominent role for structural position. Similarly, the social mobility matrix

(panel d) illustrates significant fertility differences across various origin-mobility combinations, in-

dicating that the dynamic component also accounts for a considerable part of the overall observed

variation.

4. The Social Structure Slope and the Social Mobility Slope

At a more fundamental level, the two linear parameters of interest in Equation 15 are Γ1 and Γ2.40

The linear term Γ1 is the social structure slope, or for short, the ST slope, which describes a set of

overall (linear) differences in the social structure, or a structural inequality. Note that Γ1 is the sum

of two terms from the L-ODMmodel: α, the linear origin term, and β, the linear destination term.

This is because, within a given mobility level, as we compare successive class origin groups, they

are also observed in higher class destination groups. By contrast, Γ2 is the social mobility slope, or,

for short, the SM slope, which describes a set of overall (linear) differences with respect to social

mobility, or a dynamic inequality. Like the ST slope, Γ2 is the sum of two terms from the L-ODM

model: γ, the linear mobility term, and β, the linear destination term. Again, this is because within

a given class origin group, greater movement up (or down) the class hierarchy corresponds to a

higher (or lower) class destination. With respect to Sobel’s (1981) fertility data, the ST slope is Γ̂1 =

40Note that, unlike in our discussion of bounding analyses, our goal is to interpret these parameters directly as
descriptive quantities, rather than use them to construct a canonical solution line and bounding formulas.
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−0.317, while the SM slope is Γ̂2 = −0.213.41 Both slopes are negative, indicating that higher

levels in the social structure as well as upward social mobility both correspond to lower levels of

fertility (see also Figure A.2 in Online Appendix A).

The ST and SM slopes can take on different values, with different implications for the patterns

observed in amobility table (see Table A.3 inOnline Appendix A). In aworldwith no social mobility

(i.e., where the SM slope is zero), linear differences within different class destinations are the same

as linear differences within different mobility groups (i.e., both will reflect the ST slope). Visually,

this will appear as a set of linear differences that vary only by class origin, or across the rows of

an origin-destination mobility table. Conversely, in a world with no structural inequality (i.e., the

ST slope is zero), the linear differences within class origin groups will be the same as those within

class destination groups (i.e., both will reflect the SM slope). Visually, this will appear as a set of

linear differences that vary across mobility groups, or across the diagonals of an origin-destination

mobility table.42 To our knowledge, this feature of mobility tables has not been recognized before.

5. Social Structure and Social Mobility Curves

The ST and SM slopes provide basic overall information on the overall structural inequality and

social mobility gradient observed in the data. However, more informative summaries incorporate

the origin and mobility nonlinearities, respectively. Specifically, adding the origin nonlinearities

along with the ST slope results in the social structure curve, or ST curve, defined by Γ1(i− i∗) + α̃i

for origin groups i = 1, . . . , I .43 Likewise, adding the mobility nonlinearities along with the SM

slope results in the social mobility curve, or SM curve, defined byΓ2(k−k∗)+ γ̃k formobility groups

k = 1, . . . , K . The ST and SM curves for Sobel’s fertility data are shown in Figure 8. Regarding

structural inequality, the main conclusion is similar to that for the ST slope, with higher (or lower)

positions corresponding to lower fertility levels, althoughwith few differences between the top two
41Note that previously these parameters were discussed only because they define the location of the canonical solu-

tion line in the parameter space. Here our focus is on their substantive meaning as descriptive quantities in their own
right.

42This relationship again mean that one should exercise caution when trying to interpret any observed pattern in a
mobility table as purely an origin “effect” or a mobility “effect,” because such patterns can appear naturally in the data
even though they are joint sets of parameters. It also means that we can plot the ST and SM slopes with respect to class
origin and destination, respectively, without loss of information.

43For simplicity of presentation, we exclude the intercept from the definitions of the various parametric expressions
in the following sections. However, visualizations of these expressions include the intercept term.
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social classes. Likewise, we find that downward (or upward) mobility corresponds with lower (or

higher) levels of fertility.

6. Comparative Mobility Curves

The ST and SM curves (as well as the slopes) are highly informative, compact summaries of the

variability on a mobility table. However, in practice it is often useful to supplement these measures

with mobility curves specific to each class origin group, or what we call comparative mobility curves.

Two particularly useful versions of these curves are shown in Figure 9, again using the fertility data.

First, there are what we call overall comparative mobility curves, which are defined as:

Structural Inequality
(Social Structure)︷ ︸︸ ︷

Γ1(i− i∗) + α̃i + Γ2(k − k∗) + γ̃k︸ ︷︷ ︸
Dynamic Inequality
(Social Mobility)

for k = 1, . . . ,K in each class origin group i, (16)

which represents the pattern of social mobility for a given class origin group i in terms of the SM

curve (indexed by mobility levels), or Γ2(k − k∗) + γ̃k , and the overall structural level for a given

class origin group i in terms of the ST curve (indexed by class origin), or Γ1(i− i∗) + α̃i.

A slightly more complex representation is identical to Equation 16 but includes the nonlin-

earities attributable to class destination. This results in what we call adjusted comparative mobility

curves:44

Structural Inequality
(Social Structure)︷ ︸︸ ︷

Γ1(i− i∗) + α̃i + β̃i+k−I + Γ2(k − k∗) + γ̃k︸ ︷︷ ︸
Dynamic Inequality
(Social Mobility)

for k = 1, . . . ,K in each class origin group i, (17)

where the β̃i+k−I terms are the class destination nonlinearities. Note that the destination nonlin-

earities are indexed by both class origin and mobility levels, and thus represent both structural and

dynamic inequalities.
44These curves are “adjusted” in the specific sense that they are purged of cell-specific heterogeneity (i.e., joint inter-

action terms). In general, the raw (or “unadjusted”) cell means (or other summaries) of a mobility table will differ from
the “adjusted” means given by Equation 17. Note that, to keep our analyses consistent with our analyses of the DRM,
we are using simulated data in which the proportionality constraint of the DRM holds with respect to the nonlinear-
ities. Thus, in our analyses below the “adjusted” curves are equal to the “unadjusted” curves (see Table G.1 in Online
Appendix G).
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Figure 9 shows overall and adjusted comparative mobility curves using Sobel’s (1981) fertility

data. Panel (a) of Figure 9 displays the collection of overall comparative mobility curves (Equation

16). Each of the class origin groups are labeled from 1 to 5. The vertical axis is the number of

children, while the x-axis is the mobility dimension. Note that each class origin group is entitled to

only a specific pattern of social mobility. For example, those at the top of the class hierarchy (class

5) can either be immobile ormove downward, while those at the bottom of the class hierarchy (class

1) can either be immobile or move upward.

These curves encapsulate a great deal of information about the relationships between the social

structure and social mobility with respect to fertility. Vertical differences between the class origin

groups are a function of the structural component, or Γ1(i − i∗) + α̃i. For a given origin group i,

these terms effectively act like an intercept that moves the mobility curves up and down. If social

structure were irrelevant for fertility, then all of the mobility curves would collapse on top of each

other, and thus a single mobility curve would adequately describe all of the mobility patterns. Like-

wise, panel (a) of Figure 8, which shows the ST curve, would be a flat line. Horizontal differences in

a given class origin group are a function of the social mobility component, or Γ2(k − k∗) + γ̃k. If

social mobility were irrelevant for fertility, then each mobility curve would be a horizontal straight

line, and all differences would be described in terms of the social structure. Accordingly, panel (b)

of Figure 8, which shows the SM curve, would be a flat line.

Panel (b) shows the adjusted comparative mobility curves, which are identical to the overall

curves in panel (a) except that the class destination nonlinearities are included. Vertical and hori-

zontal differences in the graph still represent structural and dynamic inequalities, respectively, but

they are now represented in amore complexway. Specifically, vertical differences between the class

origin groups are now a function of Γ1(i − i∗) + α̃i + β̃i+k−I , while horizontal differences in a

given class origin group are a function Γ2(k − k∗) + γ̃k + β̃i+k−I . Note that the class destination

nonlinearities, although additive in the model, are “interactive” in the data in that they appear at

different mobility levels for different class origin groups (for the overall destination nonlinearities,

see Figure A.1 (b) in Online Appendix A). This is a fundamental feature of data from amobility table

that, to our knowledge, has not been previously acknowledged. What thismeans in practice is that a
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model that is additive in the parameters, such as the SDImodel, is, in fact, “interactive” in the data.45

Two fundamental conclusions are apparent from the mobility curves shown in Figure 9. First,

conditional on social mobility, differences in the social structure are systematically related to lower

levels of fertility, particularly between classes 1 and 2 as well as 3 and 4. Second, conditional on the

social structure, upward (or downward) social mobility is systematically related to lower (or higher)

levels of fertility for all class origin groups. Note that these conclusions hold even for the adjusted

mobility curves shown in panel (b), which injects additional heterogeneity into the patterns.

The results in this section underscore that there is much to be learned from a purely descriptive

analysis of a simplemobility table. Rather than focusing on using information external to the data to

extract unique “effects” for origin, destination, and mobility, as is common in the existing literature

on mobility effects, our focus has been on estimating quantities that represent various aspects of

structural and dynamic inequalities. This has the great advantage of facilitating the accumulation

of knowledge, as the underlying models are identified.

Conclusion

Despite decades of research, quantitative evidence on the consequences of social mobility has been

inconclusive as it has been hampered by longstandingmethodological challenges. In this article, we

make a number of important contributions to the literature on social mobility effects, which has

been dominated in recent years by the Diagonal Reference Model (DRM).

First, we show that for plausible values of mobility effects, the DRM will in general implicitly

force the underlying linear mobility effect to zero. In addition, we show both mathematically and

through simulations that themobility effects estimated by theDRMare sensitive to the size and sign

of the origin and destination linear effects, often in ways that may be counterintuitive to applied

researchers. This finding may account for the fact that applied researchers have generally found

weak or no evidence of mobility effects on a wide range of outcomes. Second, we generalize the

identification problemof conventionalmobility effectmodels by showing that theDRMand related

methods can be viewed as special cases of a bounding analysis, where point identification is achieved

by invoking extremely strong assumptions (resulting in very tight bounds).
45Note, however, that while the class destination nonlinearities appear at different mobility levels for different class

origin groups, magnitude and direction of the class destinations are the same.
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Finally, we present a new framework for the analysis of mobility tables based on the identifi-

cation and estimation of joint parameter sets, introducing what we call the Structural and Dynamic

Inequality (SDI) model. This model is fully identified, relies onmuch weaker assumptions than con-

ventionalmodels ofmobility effects, and can be treated both as a descriptivemodel and, if additional

assumptions are invoked, as a causalmodel. We propose a range of new, highly informative, and eas-

ily interpretable estimates and graphical approaches that compare structural and dynamic aspects

of inequality. These estimates and graphical approaches show that there is much to be learned from

a purely descriptive analysis of a simple mobility table and should serve as a useful tool for future

research on social mobility.

An important and perhaps controversial conclusion from this article is that researchers should

avoid usingmodels that attempt to extract unique omnibus “effects” for origin, destination, andmo-

bility. The assumptions behind these models are not only very strong but also not directly testable

against the data. Of course, assumptions are fundamental to all statistical modeling, including stan-

dard approaches like ordinary least squares regression. However, we have sought to show that the

necessary assumptions to identify mobility effects are much stronger than generally recognized. As

a result, we consider the evidentiary basis for the individual-level effects of social mobility highly

debatable. Not because this rapidly expanding literature, which overwhelmingly uses the DRM, has

producedmixed and often null findings. But because using amodel that is unidentified carries with

it very strong, untestable assumptions, with parameters that are compatible with an infinite num-

ber of solutions. If researchers still wish to identify omnibus factors for origin, destination, and

mobility, we would recommend using bounding analyses that make explicit assumptions about the

size, sign, and/or shape of the effects. Ideally, these assumptions should be driven by social theory

or background knowledge, and the conclusions should be stated as inherently tentative.

More importantly, however, we call for a fundamental shift in the analytic focus of mobility

research. This shift rests on the basic insights that it is not meaningful to divorce class destination

from class mobility. We consider the most appropriate goal of social mobility analysis the identifi-

cation of joint sets of parameters, such as the joint effect of social destination and social mobility.

We hope that this shift in focus will move the literature to more meaningful answers that can be

falsified against the data. Our new approach, consistent with what we term “positional sociology,”
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is to treat origin, destination, andmobility as dimensions alongwhich variability is observed, rather

than as proxies for unobserved causal factors (Fosse and Pfeffer 2023). Interpreting origin, destina-

tion, and mobility as dimensions of variability, and working with functions of the form f(O,M),

are the core ideas of the kind of social mobility analysis we envision.

At the same time, we acknowledge that, despite the aforementioned discussion, some analysts

will persist in attempting to isolate distinct “effects” for origin, destination, and mobility. To help

guide applied researchers, we outline a sequence of steps for analyzing data from a social mobility

table, whether one’s aim is to describe structural and dynamic inequalities based on identifiable,

joint parameter sets or to extract unique effects for origin, destination, and mobility. Table 7 sum-

marizes these steps and calls out the sections or equations in the manuscript that match each step.

First, researchers should fit the Structural and Dynamic Inequality (SDI) model, as detailed in

Section III.2 and Equation 15. This model serves as the foundation for understanding the distinct

components of inequality. Second, the interpretation phase involves examining the Social Struc-

ture (ST) and Social Mobility (SM) slopes, the ST and SM curves, as well as the Social Structure and

SocialMobilitymatrices. These elements, discussed in Sections III.4 and III.5, provide fundamental

insights into the structural and dynamic aspects of inequality. Third, a more detailed examination

involves interpreting the overall and adjusted comparative mobility curves, as explained in Section

III.6 and outlined in Equations 16 and 17. These curves illustrate specific mobility patterns for

different origin groups. Fourth, if the goal is to identify the unique “effects” of origin, destination,

andmobility, then we recommend that researchers adopt a partial identification approach in which

the parameters are bounded based on explicit assumptions about the size, sign, or shape of the ef-

fects. Thismethod is covered in Sections II.1 and II.2. Finally, when employing bounding strategies,

it is crucial to provide a range of these strategies and to emphasize the inherently tentative, non-

falsifiable nature of the conclusions. Moreover, the strong assumptions required to interpret these

quantities in terms of formal counterfactuals should be clearly articulated, as discussed in Section

II.2 and Online Appendix F.

We end by outlining a few options for future research that could extend the SDI model in a va-

riety of different directions: First, the SDI model can be extended by interacting the components

with time, allowing one to examine how the roles of social structure and social mobility change
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over time. Note, however, that this requires a large sample due to the sparseness at the extremes

of the mobility table, as well as appropriate restrictions to deal with overfitting noise. Second, an-

other extension is to include covariates in the model and examine potential interactions. Third,

researchers should consider extending the SDI model to continuous data. This will require mod-

els that use more flexible functional forms, such as cubic regression splines or generalized additive

models (GAMs), to deal with complex nonlinearities in the data. Fourth, the SDI model can be

extended to address directional mobility, i.e., to distinguish the distinct patterns associated with

downward and upward mobility. As currently formulated, the model captures the average linear

component representing mobility-related differences (via the SM slope, Γ2), while accommodating

asymmetric overall patterns of mobility through its flexible nonlinear mobility components. One

could conceive of extensions where this linear component itself differs systematically by direction

(upward versus downwardmobility). Potential modifications could involve specifying separate lin-

ear SM slopes for upward and downwardmobility, possibly through interaction termswith a direc-

tional indicator or by using explicit piecewise coding. Finally, more generally, we recommend that

researchers consider alternativeways of specifyingmodels of the formY = f(O,M)+ϵ (as well as

Y = f(D)+ϵ). Althoughwe believe that the SDImodel is particularly useful for summarizing data

from a mobility table, other possible models, such as those that explicitly incorporate interactions

between class origin and mobility, may be useful in other applications.
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Tables

Table 1: Diagonal Reference Model on a 3× 3Mobility Table

j = 1 j = 2 J = 3

i = 1 µ113 =µ11 + γ3 + ϕ113 µ124 =woµ11+wdµ22+γ4+
ϕ124

µ135 =woµ11+wdµ33+γ5+
ϕ135

K = 5

i = 2 µ212 =woµ22+wdµ11+γ2+
ϕ212

µ223 =µ22 + γ3 + ϕ223 µ234 =woµ22+wdµ33+γ4+
ϕ234

k = 4

I = 3 µ311 =woµ33+wdµ11+γ1+
ϕ311

µ322 =woµ33+wdµ22+γ2+
ϕ322

µ333 =µ33 + γ3 + ϕ333 k = 3

k = 1 k = 2 k = 3

Notes: Number of origin and destination groups is set at I = 3 and J = 3. The DRM is given
generically by µijk = woµi[j=i] + wdµ[i=j]j + γk + ϕijk .
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Table 2: Sobel (1981) Fertility Data

j = 1 j = 2 j = 3 j = 4 J = 5

i = 1 3.194 2.850 2.760 2.142 2.252 K = 9

(484) (687) (462) (148) (389)

i = 2 3.000 2.423 2.423 1.908 2.180 k = 8

(34) (513) (345) (163) (322)

i = 3 1.900 2.349 2.407 2.020 2.113 k = 7

(20) (269) (307) (153) (318)

i = 4 2.700 2.225 2.389 1.631 2.005 k = 6

(10) (71) (54) (65) (190)

I = 5 2.850 2.308 2.031 1.752 2.024 k = 5

(20) (130) (129) (137) (538)

k = 1 k = 2 k = 3 k = 4 k = 5

Notes: The outcome is mean number of children ever born
by father’s occupation (origin) and husband’s 1962 occupation
(destination) among wives aged 42 to 61 years in March 1962
whowere currently livingwith their husband in theOCG sam-
ple. Numbers in parentheses are number of respondents for
each cell. Total sample isR = 5, 958.
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Table 3: Comparing Nonlinear Effects Using Data from Sobel (1981)

Origin Nonlinear Effects Destination Nonlinear Effects

α̃1 α̃2 α̃3 α̃4 α̃5 β̃1 β̃2 β̃3 β̃4 β̃5

DRM 0.085 −0.078 0.014 −0.133 0.112 0.150 −0.139 0.025 −0.235 0.199

Ratio 0.361 0.361 0.361 0.361 0.361 0.639 0.639 0.639 0.639 0.639

L-ODMmodel 0.122 −0.119 −0.045 −0.038 0.081 0.105 −0.097 0.069 −0.265 0.189

Ratio 0.538 0.552 −1.918 0.125 0.300 0.462 0.448 2.918 0.875 0.700

Notes: Nonlinear effects for origin and destination are shown for the DRM and the L-ODM model
using Sobel’s (1981) fertility data. Nonlinear effects for origin and destination, respectively, are ex-
pressed as deviations from their respective overall levels and linear effects. Ratios for the origin non-
linear effects are calculated as α̃i/(α̃i + β̃[j=i]), while those for the destination nonlinear effects are
calculated as β̃j/(α̃[i=j] + β̃j). For example, the ith origin nonlinear effect is divided by the sum of
the ith and jth origin and destination nonlinear effects. Total sample isR = 5, 958.
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Table 4: Biased Mobility Linear Effects Using the DRM

True DGP: γ −1.000 −0.500 −0.250 −0.010 0.250 0.500 1.000

Origin Effects: α̂ −0.115 −0.115 −0.115 −0.115 −0.115 −0.115 −0.115

α̂2 0.041 0.041 0.041 0.041 0.041 0.041 0.041

α̂3 0.013 0.013 0.013 0.013 0.013 0.013 0.013

α̂4 0.016 0.016 0.016 0.016 0.016 0.016 0.016

Destination Effects: β̂ −0.202 −0.202 −0.202 −0.202 −0.202 −0.202 −0.202

β̂2 0.073 0.073 0.073 0.073 0.073 0.073 0.073

β̂3 0.024 0.024 0.024 0.024 0.024 0.024 0.024

β̂4 0.029 0.029 0.029 0.029 0.029 0.029 0.029

Mobility Effects: γ̂ −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.010

γ̂2 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

γ̂3 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007 −0.007

γ̂4 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

γ̂5 0.003 0.003 0.003 0.003 0.003 0.003 0.003

γ̂6 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002

γ̂7 0.002 0.002 0.002 0.002 0.002 0.002 0.002

γ̂8 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

Notes: DGP = data generating parameter. Number of origin and destination groups is set at I = 5
and J = 5, respectively, for all simulations. Sample size for each simulation is R = 5, 958. The top
row indicates the true data generating parameter for the mobility linear effect for a given simulated
data set, while the remaining rows give the corresponding DRM estimates. Shaded column indicates
when the DRM recovers the true mobility linear effect. The true linear effect of destination is given by
β = (γ+β)−γ, or−0.213−γ. The true linear effect of origin is given byα = (α+β)−(γ+β)+γ,
or −0.104 + γ. The remaining data generating parameters are given by µ = 2.3171, α2 = 0.0411,
α3 = 0.0136, α4 = 0.0161, β2 = 0.0730, β3 = 0.0242, β4 = 0.0285, γ2 = −0.0012, γ3 =
−0.0074, γ4 = 0.0004, γ5 = 0.0027, γ6 = −0.0022, γ7 = 0.0017, γ8 = −0.0008. All data
generating parameters are derived from fertility data used by Sobel (1981). For simplicity, and without
loss of generality, we assume no random error.
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Table 5: Sensitivity of Estimated Mobility Linear Effect
to Values of True Origin and Destination Linear Effects

True DGP DRM Estimates Bias of γ̂

α β γ α̂ β̂ γ̂ (β)(ŵo) − (α)(ŵd) = γ̂ − γ

Varying α: 0.500 0.250 0.250 0.375 0.375 0.125 (0.250)(0.500) − (0.500)(0.500) = 0.125

0.250 0.250 0.250 0.250 0.250 0.250 (0.250)(0.500) − (0.250)(0.500) = 0.000

0.050 0.250 0.250 0.150 0.150 0.350 (0.250)(0.500) − (0.050)(0.500) = 0.100

0.000 0.250 0.250 0.125 0.125 0.375 (0.250)(0.500) − (0.000)(0.500) = 0.125

−0.050 0.250 0.250 0.100 0.100 0.400 (0.250)(0.500) + (0.050)(0.500) = 0.150

−0.250 0.250 0.250 0.000 0.000 0.500 (0.250)(0.500) + (0.250)(0.500) = 0.250

−0.500 0.250 0.250−0.125−0.125 0.625 (0.250)(0.500) + (0.500)(0.500) = 0.375

Varying β: 0.250 0.500 0.250 0.375 0.375 0.375 (0.500)(0.500) − (0.250)(0.500) = 0.125

0.250 0.250 0.250 0.250 0.250 0.250 (0.250)(0.500) − (0.250)(0.500) = 0.000

0.250 0.050 0.250 0.150 0.150 0.150 (0.050)(0.500) − (0.250)(0.500) =−0.100

0.250 0.000 0.250 0.125 0.125 0.125 (0.000)(0.500) − (0.250)(0.500) =−0.125

0.250−0.050 0.250 0.100 0.100 0.100 (−0.050)(0.500) − (0.250)(0.500) =−0.150

0.250−0.250 0.250 0.000 0.000 0.000 (−0.250)(0.500) − (0.250)(0.500) =−0.250

0.250−0.500 0.250−0.125−0.125−0.125 (−0.500)(0.500) − (0.250)(0.500) =−0.375

Notes: Number of origin and destination groups is set at I = 5 and J = 5, respectively, for all simulations. Sample
size for each simulation isR = 5, 958. Shaded rows indicate that theDRMrecovers the truemobility linear effect. All
nonlinear effects are zero in the data generating model. For simplicity, and without loss of generality, we assume no
random error. Note that, because there are no nonlinear effects included in the data generating parameters, that the
origin and destination weights generated by the DRM are both 0.500. The bias arises because the underlying origin
and destination linear effects do not obey the proportionality constraints of these weights. For example, in the top
row, the true origin linear effect isα = 0.500 and the true destination linear effect is0.250, so the trueweights needed
to recover these effects arewo = 0.500/(0.250+ 0.500) = 0.667 andwd = 0.250/(0.250+ 0.500) = 0.333. Yet
the estimated origin weights are simply ŵo = ŵd = 0.500.
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Table 6: Typology of Models for a Mobility Table

Origin Destination Mobility

f(O) f(O,D) f(O,M) Origin

f(D) f(D,M) Destination

f(M) Mobility

Notes: This table presents a typology of possible models given a mobility table
or, more generally, data with class origin, class destination, and class mobility
variables. In the table above, O denotes class origin, D class destination, and
M class mobility, with f(·) defining some general function. Preferred models
are highlighted in gray. Note that these functions are all distinct from a con-
ventional mobility effects model, which has the form of f(O∗,D∗,M∗), where
O∗,D∗, andM∗ are unobserved causal factors proxied byO,D, andM .
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Table 7: Recommended Procedure for Analyzing Social Mobility Data

Step Description Reference(s)

1 Fit the Structural and Dynamic Inequality (SDI) model Section III.2 (see Eq. 15)

2 Interpret the Social Structure (ST) and Social Mobility
(SM) slopes, the ST and SM curves, and the Social Struc-
ture and Social Mobility matrices

Section III.4, Section III.5

3 Interpret the overall and adjusted comparative mobility
curves

Section III.6 (see Eqs. 16, 17)

4 If one desires to partially identify unique “effects,” in-
voke explicit assumptions about the size, sign, or shape
to bound the origin, destination, or mobility “effects”

Section II.1, Section II.2

5 Provide a range of bounding strategies and emphasize the
inherently tentative, non-falsifiable nature of the conclu-
sions, as well as the strong assumptions required to inter-
pret these quantities in terms of formal counterfactuals

Section II.2, Online Appendix F

54



Figures

Figure 1: The Rise of the DRM
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Notes: This line plot shows, by year, the cumulative number of articles
using the DRM since Sobel’s (1981) publication. Online Appendix D
contains the full list of publications thatmake up the data for this graph.

55



Figure 2: 3D Canonical Solution Line
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Notes: This graph shows the canonical solution line based on Sobel’s (1981)
fertility data. All possible combinations of origin, destination, and mobility
slopes, denoted by α∗, β∗, and γ∗, respectively, lie on this line. Algebraically,
the line is equivalent to the set of equations α∗ = α + ν , β∗ = β − ν ,
γ∗ = γ + ν , where α, β, and γ are the true origin, destination, and mobility
slopes and ν is some scalar. Any given constrained model is equivalent to
selecting a particular value of ν .
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Figure 3: Point Identification of Mobility Effects Models:
2D Canonical Solution Line
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Notes: This graph shows the 2Dcanonical solution line based onSobel’s (1981)
fertility data. Solution line is identical to that shown in Figure 2, but flattened
to two dimensions. Points indicate estimated linear effects for the Square
Additive Model (SAM), Diagonal Reference Model (DRM), and under the as-
sumption that origin and destination have the same slope (Same-Slopes).
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Figure 4: Point Identification of Mobility Effects Models
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Notes: This graph shows the mobility effects for the Square Additive Model
(SAM), Diagonal ReferenceModel (DRM), and under the same-slopes for ori-
gin and destination constraint (Same-Slopes). Data are based on Sobel (1981).
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Figure 5: Partial Identification of Mobility Effects Models:
2D Canonical Solution Line

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β*

α* γ*

(b)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β*

α* γ*

(c)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β*

α* γ*

(d)

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β*

α* γ*

Notes: Panel (a) shows bounds on the canonical solution line using the same-sign assumption for class origin
and destination. Panel (b) shows bounds on the canonical solution line under the assumption of a monotonically
downward effect for class origin with respect to the quadratic component of the origin nonlinear effects as well
as a same-sign assumption for class destination. Panel (c) shows bounds on the canonical solution line under
the assumption of a monotonically decreasing origin effect for lower-class groups (1, 2, and 3) in addition to a
same-sign assumption for class destination. Lastly, panel (d) shows bounds on the canonical solution line under
the assumption of a monotonically decreasing origin effect for upper-class origin groups (3,4, and 5) as well as a
same-sign assumption for class destination. Blue rectangle indicates bounds on class origin while red rectangle
denotes bounds on class destination. Bold line indicates that part of the canonical solution line consistent with
the data as well as the particular assumptions invoked. Data are based on Sobel (1981).
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Figure 6: Partial Identification of Mobility Effects Models
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Notes: Panel (a) shows the mobility effects using the same-sign assumption for class origin and destination. Panel
(b) shows bounds on the mobility effects under the assumption of a monotonically downward effect for class ori-
gin with respect to the quadratic component of the origin nonlinear effects as well as a same-sign assumption
for class destination. Panel (c) shows bounds on the mobility effects under the assumption of a monotonically
decreasing origin effect for lower-class groups (1, 2, and 3) in addition to a same-sign assumption for class desti-
nation. Lastly, panel (d) shows bounds on themobility effects under the assumption of amonotonically decreasing
origin effect for upper-class origin groups (3,4, and 5) aswell as a same-sign assumption for class destination. Dot-
ted line indicates the midpoint of the bounds. Data are based on Sobel (1981).
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Figure 7: Social Mobility Matrices
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Notes: Panels (a) and (b) present 2D and 3D visualizations, respectively, of the predictedmean fertility based
on the SDImodel’smain parameters. That is, each cell is given by µ̂ijk = µ+Γ1(i−i∗)+Γ2(k−k∗)+α̃i+

β̃[i+k−I]+ γ̃k . Panel (c) shows themean fertility based on the joint origin-destinationmobility parameters,
such that µ̂ijk = µ+Γ1(i− i∗) + α̃i + β̃[i+k−I]. Finally, panel (d) shows the mean fertility based on the
joint mobility-destination mobility parameters, such that µ̂ijk = µ+ Γ2(k − k∗) + γ̃k + β̃[i+k−I]. Data
are based on Sobel (1981).
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Figure 8: Social Structure and Social Mobility Curves
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Notes: Panel (a) shows the social structure (ST) curve, given byΓ1(i−i∗)+
α̃i for class origin groups i = 1, . . . , I . Panel (b) shows the social mobility
(SM) curve, given by Γ2(k− k∗) + γ̃k for mobility groups k = 1, . . . ,K .
Γ1 = α+ β and Γ2 = γ + β. Data are based on Sobel (1981).
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Figure 9: Comparative Mobility Curves
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Notes: Panel (a) shows the overall comparative mobility curve. Each curve is a function of ϕi +
Γ2(k − k∗) + γ̃k for all k in each origin group i. Panel (b) shows the adjusted comparative
mobility curve. Each curve is a function of ϕi + Γ2(k − k∗) + γ̃k + β̃i+k−I for all k in each
origin group i. For both curves ϕi is equal toΓ1(i− i∗)+ α̃i, which is a single value for a given
origin group i. Data are based on Sobel (1981).
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Online Appendix A: Supplemental Tables and Figures

Table A.1: Bounding Formulas for Slopes

Origin Bounds: αmin ≤ α ≤ αmax

Γ1 − αmax ≤ β ≤ Γ1 − αmin

(Γ2 − Γ1) + αmin ≤ γ ≤ (Γ2 − Γ1) + αmax

Destination Bounds: Γ1 − βmax ≤ α ≤ Γ1 − βmin

βmin ≤ β ≤ βmax

Γ2 − βmax ≤ γ < Γ2 − βmin

Mobility Bounds: (Γ1 − Γ2) + γmin ≤ α ≤ (Γ1 − Γ2) + γmax

Γ2 − γmin ≤ β ≤ Γ2 − γmax

γmin ≤ γ ≤ γmax

Notes: Origin, destination, and mobility slopes are α, β, and γ, respectively, with (.)min

and (.)max denoting minimum and maximum values of the bounds. We denote Γ1 =
α+ β, Γ2 = β + γ, Γ1 − Γ2 = α− γ, and Γ2 − Γ1 = γ − α.
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Table A.2: Bounds Given by Setting the Sign of One or Two Slopes

Sign of One Slope Origin Destination Mobility

If α ≥ 0 then: 0 ≤ α < +∞ −∞ < β ≤ Γ1 (Γ2 − Γ1) ≤ γ < +∞
If α ≤ 0 then: −∞ < α ≤ 0 Γ1 ≤ β < +∞ −∞ < γ ≤ (Γ2 − Γ1)

If β ≥ 0 then: −∞ < α ≤ Γ1 0 ≤ β < +∞ −∞ < γ ≤ Γ2

If β ≤ 0 then: Γ1 ≤ α < +∞ −∞ < β ≤ 0 Γ2 ≤ γ < +∞

If γ ≥ 0 then: (Γ1 − Γ2) ≤ α < +∞ −∞ < β ≤ Γ2 0 ≤ γ < +∞
If γ ≤ 0 then: −∞ < α ≤ (Γ1 − Γ2) Γ2 ≤ β < +∞ −∞ < γ ≤ 0

Sign of Two Slopes Origin Destination Mobility

If α ≥ 0 and β ≥ 0 then: 0 ≤ α ≤ Γ1 0 ≤ β ≤ Γ1 (Γ2 − Γ1) ≤ γ ≤ Γ2

If α ≤ 0 and β ≤ 0 then: Γ1 ≤ α ≤ 0 Γ2 ≤ β ≤ 0 Γ2 ≤ γ ≤ (Γ2 − Γ1)

If β ≥ 0 and γ ≥ 0 then: (Γ1 − Γ2) ≤ α ≤ Γ1 0 ≤ β ≤ Γ2 0 ≤ γ ≤ Γ2

If β ≤ 0 and γ ≤ 0 then: Γ1 ≤ α ≤ (Γ1 − Γ2) Γ2 ≤ β ≤ 0 Γ2 ≤ γ ≤ 0

If α ≥ 0 and γ ≤ 0 then: 0 ≤ α ≤ (Γ1 − Γ2) Γ2 ≤ β ≤ Γ1 (Γ2 − Γ1) ≤ γ ≤ 0

If α ≤ 0 and γ ≥ 0 then: (Γ1 − Γ2) ≤ α ≤ 0 Γ1 ≤ β ≤ Γ2 0 ≤ γ ≤ (Γ2 − Γ1)

Notes: Origin, destination, and mobility slopes are α, β, and γ, respectively, with (.)min and (.)max denoting
minimum and maximum values of the bounds. We denote Γ1 = α+ β, Γ2 = β + γ, Γ1 − Γ2 = α− γ, and
Γ2 − Γ1 = γ − α.
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Table A.3: Relationships among ST, SM, & Intra-Destination Slopes

Social Structure (ST) Slope: If Γ1 = 0, then: Γ2 − Γ1 = Γ2

If Γ1 > 0, then: Γ2 − Γ1 < Γ2

If Γ1 < 0, then: Γ2 − Γ1 > Γ2

Social Mobility (SM) Slope: If Γ2 = 0, then: Γ1 − Γ2 = Γ1

If Γ2 > 0, then: Γ1 − Γ2 < Γ1

If Γ2 < 0, then: Γ1 − Γ2 > Γ1

Intra-Destination Origin Slope: If Γ1 − Γ2 = 0, then: Γ1 = Γ2

If Γ1 − Γ2 > 0, then: Γ1 > Γ2

If Γ1 − Γ2 < 0, then: Γ1 < Γ2

Intra-Destination Mobility Slope: If Γ2 − Γ1 = 0, then: Γ2 = Γ1

If Γ2 − Γ1 > 0, then: Γ2 > Γ1

If Γ2 − Γ1 < 0, then: Γ2 < Γ1

Notes: Γ1 = α+ β and Γ2 = γ + β.
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Figure A.1: Nonlinearities for Origin, Destination, and Mobility
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Notes: Panels (a), (b), and (c) show the origin, destination, and mobility nonlinearities, which are con-
strained to sum to zero. Data are based on Sobel (1981).
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Figure A.2: Social Structure and Social Mobility Slopes
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Notes: Panel (a) shows the social structure (ST) slope, while panel (b)
shows the social mobility (SM) slope. Γ1 = α + β and Γ2 = γ + β.
Data are based on Sobel (1981).
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Online Appendix B:
Mobility Models & The Identification Challenge: A General Introduction

In this section, we first present a general mobility effects model that incorporates primary param-
eters capturing the independent effects of origin, destination, and mobility, along with additional
cell-specific parameters that represent heterogeneity or interactions among these dimensions. We
then introduce a reparameterized version of the conventional model that explicitly distinguishes
linear from nonlinear effects. This reparameterization facilitates a deeper understanding of the in-
herent limitations in identifying mobility effects while also laying the groundwork for the various
approaches to analyzing mobility effects we discuss in subsequent sections.

In the conventional mobility effects literature, researchers pursue the identification of unique
origin, destination, and mobility effects despite the mathematical dependency among these dimen-
sions. While not explicitly articulated, this pursuit implies a conceptual distinction between ob-
served positions on a mobility table, namely, origin, destination, and mobility, and the underlying
causal mechanisms they represent. That is, although destination (D) is mathematically defined as
the sum of origin (O) and mobility (M ), the bundles of causal mechanisms they proxy for, which
we denote asO∗,D∗, andM∗, are theoretically distinct and capable of varying independently. Ori-
gin effects (O∗) might represent parental economic resources, cultural socialization, or educational
guidance; destination effects (D∗) could capture workplace authority relations, professional net-
work benefits, or class-based consumption opportunities; and mobility effects (M∗) might reflect
distinct processes such as status anxiety, reference group changes, or psychological adaptation to
class transitions. This distinction supplies the rationale for attempting to identify unique effects
of origin, destination, and mobility, notwithstanding their deterministic mathematical relation-
ship. More formally, let O∗, D∗, and M∗ denote underlying bundles of causal mechanisms that
are allowed to vary freely from each other such that D∗ ̸= O∗ + M∗. Mobility effects analysis,
as commonly used in the literature, can generally be understood as any analysis using functions of
the form Y = f(O∗, D∗,M∗) + ϵ, where ϵ is a normally distributed error term with a mean of
zero. However, becauseO∗,D∗, andM∗ are typically unobserved, the observed dimensions of the
mobility table, O, D, andM , which have the natural relationship D = O + M , are substituted
for the underlying causal variables O∗,D∗, andM∗ (cf. Bijlsma et al. 2017: 722-724; Clogg 1982;
Heckman and Robb 1985). As we show in later sections, it is only under very strong assumptions
that one can extract unique “effects” using a conventional analysis of mobility effects.

More specifically, suppose we have data collected on individuals indexed from r = 1, . . . , R,
where R is the total number of respondents. Additionally, suppose we have data collected on the
underlying causal factorsO∗,D∗,M∗, which are coded as categorical variables with levels indexed
by l = 1, . . . , L, p = 1, . . . , P , and n = 1, . . . , N , respectively.46 The mobility effects model can
thus be specified as follows:

Y = f(O∗, D∗,M∗) + ϵ = µ∗ + α∗
l + β∗

p + γ∗n + η∗lpn + ξ∗rlpn, (B.1)

where µ∗ is the intercept (or overall mean); α∗
l , β∗

p , γ∗n denote the lth, pth, nth levels of the un-
derlying causal factors for origin, destination, and mobility, respectively; η∗lpn is an additional (or-
thogonal) term denoting interactions among the underlying factors; and ξ∗rlpn is an individual-level,
normally distributed error termwith amean of zero. If one somehowhad access to these underlying
factors, then, under standard assumptions of consistency and no interference between units, posi-
tivity and overlap, and conditional ignorability, we could use Equation B.1 to estimateE[Y o∗d∗m∗

],
46For simplicity, andwithout loss of generality, wewill assume that the origin and destination categories are of equal

width.
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the expected value of the counterfactual outcome if we were to setO∗ to some value o∗,D∗ to some
value d∗, andM∗ to some valuem∗, each of which, as noted above, are allowed to freely vary. The
estimand here is the difference in expected outcomes for two hypothetical individuals who share
the same origin o∗ and the same destination d∗ but differ in their mobility factorm∗. Formally, one
can write this “mobility effect” as:

E
[
Y (o∗,d∗,m∗)

]
− E

[
Y (o∗,d∗,m′∗)

]
,

where o∗ and d∗ are held fixed at the same levels in both expectations, andm∗ ̸= m′∗ represents two
different possiblemobility “treatments.” Under the usual assumptions (consistency, no interference,
positivity, ignorability, as well as the assumption that the causal directions are appropriately spec-
ified), this difference captures how much the outcome Y would change if origin and destination
were fixed to the same values but mobility status were fixed to different values. This is the esti-
mand that the rapidly growing literature on social mobility effects, which overwhelmingly uses the
DRM (see Online Appendix C), seeks to identify. The methodological challenges we discuss in the
section “The Diagonal Reference Model” apply to this estimand but not necessarily to other causal
estimands, such as those identified in the section “A Paradigm Shift”.

In practice, one typically does not have access to the underlying bundles of causal mechanisms
in Equation B.1. Instead of treating them as dimensions of observed positionality on a mobility
table,O,D,M , as noted above, are used as proxies forO∗,D∗, andM∗.47 Specifically, suppose we
have a set of categorical variables for i = 1, . . . I origin groups, j = 1, . . . , J destination groups,
and k = j− i+I, . . .K mobility groups. Themobility effects model using origin, destination, and
mobility as proxies can accordingly be specified using what we call the Classical Origin-Destination-
Mobility (C-ODM) model:

Y = f(O∗, D∗,M∗) + ϵ = µ+ αi + βj + γk + ηijk + ξrijk, (B.2)

where µ is the intercept (or overall mean); αi, βj , γk denote the ith, jth, kth observed levels of
origin, destination, and mobility, respectively; ηijk is an additional (orthogonal) term denoting in-
teractions; and ξrijk is an individual-level, normally-distributed error termwith a mean of zero. To
reiterate, Equation B.2 is based on the implicit assumption thatO,D, andM (and their respective
indices) can be treated as surrogates forO∗,D∗, andM∗ (and their respective indices). To simplify
the exposition, we will accordingly refer to αi, βj , and γk as the “true” origin, destination, and mo-
bility effects, but the reader should keep in mind that this is shorthand for referring to α∗

l , β∗
p , γ∗n

(for a similar point, see Fosse and Winship 2019a).
Unfortunately, the basic mobility effects model outlined in Equation B.2 suffers from a fun-

damental identification problem that that goes beyond the identification problem common to all
linear models using categorical variables as inputs.48 This problem was vividly illustrated by the

47An alternative strategy is to shift away frommodeling general “effects” and instead focus on examining the effects
of specific variables that are thought to capture particular origin-, destination-, or mobility-related processes. For
example, rather than attempting to model an omnibus “mobility effect” on, say, voting behavior or political preferences
(e.g., Clifford and Heath 1993; De Graaf et al. 1995), one might examine how specific mobility-related events, such
as a spell of unemployment or changes in job tasks, affect the likelihood of voting for a particular political party (e.g.,
Turner and Ryan 2023; Wiertz and Rodon 2021). However, because this approach focuses on understanding the effects
of particular mechanisms rather than global origin, destination, andmobility effects, it may be seen as a shift away from
mobility effects analysis as it has been traditionally understood in the literature.

48The common identification problem is that, with an intercept in the model, there is one more level than can be
estimated for the origin, destination, and mobility effect. Although common, interpretation errors can ensue: For
example, in a related literature on APC models, it has been shown that for some estimators seemingly trivial changes
in coding schemes, such as the level used as the reference category, can generate dramatically different results (Fosse
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sociologist Hubert Blalock (1966: 53), who posed the following thought experiment: “Suppose an
unscrupulous demon were to perform certain legitimate mathematical manipulations, presenting
to us some new equationswith different numerical values for the slopes. Couldwe ever discover the
hoax?” Unfortunately, with respect to the analysis of mobility effects, the answer is in the negative:
the linear effects are not identified in conventional mobility models, and estimates are compatible
with an infinite range of possible values (Blalock 1966, 1967; Duncan 1966; Sobel 1981, 1985).49
Intuitively, this is simply because there is not enough information to identify all three linear effects
from the data alone (for a related discussion and proofs, see Fosse and Winship 2018).

It is worth emphasizing that the identification challenge in mobility research shares important
similarities with the classic age-period-cohort (APC) problem, in whichAge + Cohort = Period
creates a linear dependency that cannot be resolved with data alone. However, APC analyses typ-
ically rely on a Lexis table indexing temporally-based dimensions, namely, age, historical period,
and birth cohort, which serve as proxies for life-cycle, generational, and period-based causal pro-
cesses (e.g., see Fosse and Winship 2019b). By contrast, mobility research is grounded in struc-
tural dimensions, namely, class origin, class destination, and social mobility, that proxy class- and
movement-based causal processes. These different substantive applications have informed the his-
tory of model development in both domains. Despite these distinct substantive interpretations,
however, both APC and origin-destination-mobility models confront the same underidentification
challenge: neither set of “effects” can be uniquely disentangled without additional, often strong,
assumptions.

An alternative formulation of the C-ODMmodel (see Equation B.2) helps clarify the nature of
the identification problem. By orthogonalizing the linear from the nonlinear terms, we can specify
what we call the Linearized Origin-Destination-Mobility (L-ODM) model:

µrijk = µ+ α(i− i∗) + β(j − j∗) + γ(k − k∗) + α̃i + β̃j + γ̃k + ηijk + ξrijk (B.3)

where the asterisks denote midpoint or referent indices i∗ = (I + 1)/2, j∗ = (J + 1)/2, and
k∗ = (K + 1)/2; α, β, and γ denote the linear effects of origin, destination, and mobility, respec-
tively; and α̃, β̃, and γ̃ represent the origin, destination, andmobility nonlinear effects, respectively;
ηijk is, as before, an additional (orthogonal) term denoting interactions; and ξrijk is a normally-
distributed individual-level error termwith a mean of zero. To identify the levels of the parameters
given the inclusion of the intercept, sum-to-zero constraints are applied to the linear and nonlinear
parameters.

TheC-ODMandL-ODMmodels are equivalent representations of class data groupedbyorigin,
destination, and mobility in the sense that a model fitted using either specification will result in the
same predicted values of the outcome.50 However, the L-ODM model has a significant advantage
over the C-ODMmodel. Due to the linear dependence among origin, destination, and mobility, as
well as the fact that origin, destination, and mobility parameters combine slopes with deviations,
even after applying sum-to-zero constraints, in general no parameters are identified in the C-ODM
model other than the overall mean (cf. Fosse and Winship 2018).51 By contrast, after applying the

and Winship 2018). In the discussion that follows, we will assume that sum-to-zero constraints are applied, such that∑I
i=1 αi =

∑J
j=1 βj =

∑K
k=1 γk = 0, with the last category of the origin, destination, and mobility variables

dropped.
49This does not mean, however that, based on substantive or theoretical knowledge, one would necessarily believe

that all values are equally valid (e.g., see Fosse and Winship 2019b).
50More technically and precisely, the two models are equivalent in that they span the same linear subspace of the

data.
51However, if I , J , and/or K are odd, then under conventional “normalization” assumptions the corresponding
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sum-to-zero constraints, only the three linear effects in the L-ODMmodel remain unidentified.52
This greatly simplifies the nature of the identification problem and, as we show later, allows one
to use graphical tools for visualizing and partially identifying the parameters of a mobility effects
model. Moreover, as we demonstrate in the next section, the L-ODM can be used to clarify the
assumptions underlying the current wave of studies on mobility effects.

mean parameters α(I+1)/2, β(J+1)/2, and/or γ(K+1)/2 will be identified (see Smith 2021 for a similar point).
52We elaborate on this property later when we discuss the bounding approach to mobility effects models.
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Online Appendix C: Summarizing Variability on the Mobility Table

In this appendix we outline models for describing structural and dynamic inequalities in a mobility
table. We first present three different models for summarizing variation in a mobility based on
re-indexing the L-ODM model by origin-destination, destination-mobility, and origin-mobility,
respectively. We then show how, using the logical of omitted variable bias and matrix algebra, how
thesemodels clarify what is actually estimatedwhen fitting all three possible one-factormodels and
all three possible two-factormodels. These results show that, in general, that for describing patterns
of mobility either a model of the form Y = f(D) or Y = f(O,M) is to be preferred. Throughout
this appendix we let i = 1, . . . , I index the origin groups, j = 1, . . . , J the destination groups,
and k = 1, . . . , K the mobility groups, where k = j − i + I andK = I + J − 1. As well, we let
r = 1, . . . , R index the respondents (i.e., individuals) in the data set.

1. Three Models for Describing Dynamic and Structural Inequality

As noted in the main text, instead of attempting to identify unique or “pure” effects, one can use
the L-ODMmodel to identify structural and dynamic processes operating on a mobility table. The
key insight is that we can project the three-dimensional (unidentified) L-ODMmodel onto a two-
dimensional surface (i.e., a mobility table) by exploiting the fact that mobility, origin, and desti-
nation are linearly related. Because there are three different ways to index a mobility table (i.e.,
origin-mobility, origin-destination, destination-mobility), there are three distinctly different mod-
els for describing patterns on a mobility model.53 We outline each of these models below. Although
each model is indexed by two dimensions, because each model contains parameters for all three
dimensions, we will refer to them as “three-factor” models.

The first model is based on taking the L-ODMmodel and re-specifying it as an origin-mobility
model. Note that, given an origin-destination mobility table, j = i + k − I and J = K − I + 1.
Substituting for j and J in the L-ODM model and rearranging terms leads to what we call the
Structural and Dynamic Inequality model or the SDI model for short:

µrijk = f(O,M) = µ+ Γ1(i− i∗) + Γ2(k − k∗) + α̃i + β̃[i+k−I] + γ̃k + ηi[i+k−I]k + ξri[i+k−I]k, (C.1)

where Γ1 = α+ β and Γ2 = γ + β, or the social structure (ST) slope and the social mobility (SM)
slope, respectively. As a result of the substitution of the sum of the origin and mobility indices for
the destination indices (that is, j = i+k−I and J = K−I+1), the outcome is simply a function
of origin, indexed by i, with corresponding parameters representing structural inequalities, and
mobility, indexed by k, with corresponding parameters representing dynamic inequalities. This
model is identified (i.e., the designmatrix is of full rank) as it does not contain a separate linear term
for destination, which is instead combined with the origin and mobility linear terms, respectively.

The second model is based on expressing the parameters of the L-ODM model in terms of
origin and destination. Note that, given an origin-destination mobility table, k = j − i + I and
K = I + J − 1. Substituting for k andK in the L-ODMmodel and rearranging terms results in
what we call the Intra-Destination Differences and Structural Inequality model or, for short, theDiff-SI
model:

µrijk = f(O,D) = µ+ (Γ1 − Γ2)(i− i∗) + Γ2(j − j∗) + α̃i + β̃j + γ̃j−i+I + ηij[j−i+I] + ξrij[j−i+I], (C.2)

whereΓ1−Γ2 = (α+β)−(γ+β) = α−γ and θ2 = γ+β. The differenceΓ1−Γ2 in EquationC.2
is a slope of differences within the class destination, while Γ2 is simply the total realized mobility
slope from the SDI model, but indexed by destination (j = 1, . . . , j = J ) instead of by mobility

53Note that these models take the general form of Y = f(O,D), Y = f(D,M), and Y = f(O,M).
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levels (k = 1, . . . , k = K). Similar to the SDI model, the Diff-SI model is identified because it does
not contain a unique linear term for social mobility, which is instead absorbed into the origin and
destination linear terms.

Finally, the third logically possible model entails expressing the parameters of the L-ODM
model in terms of destination and mobility. Note that, given an origin-destination mobility table,
i = j − k + I and I = K − J + 1. Substituting for i and I in the L-ODMmodel and rearranging
terms results in what we call the Dynamic Inequality and Intra-Destination Differences model or, for
short, the DI-Diff model:

µrijk = f(D,M) = µ+ Γ1(j − j∗) + (Γ2 − Γ1)(k − k∗) + α̃j−k+(K−J+1) + β̃j + γ̃k

+ η[j−k+(K−J+1)]jk + ξr[j−k+(K−J+1)]jk, (C.3)

where Γ2 − Γ1 = (γ + β) − (α + β) = γ − α and Γ1 = α + β. The difference Γ2 − Γ1 in
Equation C.3 is an overall slope of differences within destination classes, while Γ1 is simply the SI
slope from the SDI model, but indexed by class destination (j = 1, . . . , j = J ) instead of class
origin (i = 1, . . . , i = I ). Similar to the previous two models, the DI-Diff model is identified
because it does not include a separate linear term for origin, which is instead absorbed into the
destination and mobility linear terms.

All three models outlined above provide the same estimates of the intercept and the origin, des-
tination, and mobility nonlinearities. However, unlike the SDI model, the slopes indexed by origin
and mobility in Equations C.2 and C.3, respectively, are what can be deemed “synthetic,” conflating
structural with dynamic inequalities. This is because these slopes are estimated while conditioning
on the class destination linear component, and, as such, represent heterogeneous origin-mobility
comparisons within a given class destination. In fact, it is only under very specific circumstances
that Equations C.2 and C.3 will give unbiased estimates of structural and dynamic inequalities, re-
spectively. Specifically, the Diff-SI model will produce the correct estimate ofΓ1 only ifΓ2 happens
to be zero, while theDI-Diff model will give the correct estimate ofΓ2 only ifΓ1 happens to be zero.
That is, Γ1 − Γ2 = Γ1 only if Γ2 = 0, and Γ2 − Γ1 = Γ2 only if Γ1 = 0. Thus, for the purposes
directly estimating structural and dynamic inequalities, the SDI model is strongly preferred over
the Diff-SI and DI-Diff models.

In the following sections, we examine the properties of all six logically possible one-factor and
two-factor class models for a given mobility table or, equivalently, data with class origin, destina-
tion, and mobility variables. These models are listed in Table C.1. For each one- or two-factor
model, we use a corresponding three-factor model to clarify exactly what is being estimated. For
example, as shown in the first row of Table C.1, to understand the properties of the marginal desti-
nationmodel, which is a one-factor model, we use the SDI model. Similarly, to clarify the estimates
of the two-factor origin-destination model (i.e., Duncan’s “square additive model”), we use the DI-
Diff model. Note that we consider all of these models to be descriptive, such that these various
models are different ways of summarizing aggregate-level variability on a mobility table without
relying on information purely external to the data.
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Table C.1: Comparison of Class Models for a Mobility Table

Reference Model One-Factor Model Two-Factor Model
SDI model (C.1) marginal destination (C.6) origin-mobility (C.14)
Diff-SI model (C.2) marginal mobility (C.8) origin-destination (C.10)
DI-Diff model (C.3) marginal origin (C.4) destination-mobility (C.12)

Notes: This table outlines the various one- and two-factor models analyzed based on a corresponding
reference model using matrix algebra and the logic of omitted variable bias. For example, the pa-
rameters of the marginal destination model and origin-mobility model are interpreted using the SDI
model. Equation numbers are in parentheses. Note that these models are all treated as descriptive,
and are thus distinct from a conventional mobility effects model, which has the form of f(O∗, D∗,
M∗), whereO∗,D∗, andM∗ are unobserved causal factors proxied byO,D, andM .

2. Interpreting the Parameters of One-Factor Class Models

In this section, we outline the three logically possible one-factormodels (based on either origin, des-
tination, or mobility) that can be used to describe the main patterns on a mobility table. For each
one-factor model, we outline the relationship between the model’s parameters and those from a
correspondingmodel that includes all three factors (see Equations C.1, C.2, and C.3). To avoid con-
fusionwith corresponding terms in the three-factormodels outlined previously, we use asterisks to
denote the parameters in the one-factor models. In general, among all three one-factor models, we
recommend using only the marginal destination model, as the underlying slope estimated by this
model can be straightforwardly interpreted as a weighted sum of the ST and SM slopes from the
SDI model.

i. Marginal Origin Model

The first logically possible one-factor model is the origin class mobility model, which has the fol-
lowing form:

µrijk = f(O) = µ∗ + α∗
i + ϵ∗ri, (C.4)

whereµ∗ is the intercept;α∗
j are parameters for class origin using sum-to-zero deviation (or “effect”)

coding; and ϵ∗ri denotes individual-level error. Using the DI-Diff model as a reference (see Equation
C.3), the class originmodel outlined in EquationC.4 can be shown to be equivalent to the following:

µrijk = (µ+ ϕµ)︸ ︷︷ ︸
µ∗

+
(
αM + ϕαM

)
(i− i∗) + (α̃i + ϕα̃i

)︸ ︷︷ ︸
α∗

i

+(ϵrijk + ηijk + νijk)︸ ︷︷ ︸
ϵ∗ri

and

αM =
(
Γ1ω(j,i) + (Γ2 − Γ1)ω(k,i)

)
, (C.5)

whereµ is the intercept;Γ1 is the ST slope;Γ2−Γ1 = γ−α is the intra-destination slope;αM is the
marginal origin slope; ω(j,i) is the relationship between the destination linear component and the
origin linear component conditional on the intercept and origin nonlinear components;ω(k,i) is the
relationship between the mobility linear component and the origin linear component conditional
on the intercept and origin nonlinear components;54 α̃i is the ith origin nonlinearity; ϕµ, ϕαM

and
ϕα̃i

are bias terms for the intercept, marginal origin slope, and the ith origin nonlinearity; ϵrijk
is individual-level error; ηijk denotes unique cell-specific heterogeneity; νijk denotes additional
heterogeneity attributable to class destination and mobility. The terms in brackets below Equation

54Those in the upper class can only be downwardly mobile or stay the same, while those in the lower class can only
be upwardly mobile or stay the same. Accordingly, the relationship between the mobility and origin linear components
is in general negative, and thus one can write (Γ2 − Γ1)(−ω(k,i)) = (Γ1 − Γ2)ω(k,i) in Equation C.5.
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C.5 denote the corresponding parameters from the marginal origin model presented in Equation
C.4.

Several points are worth noting regarding Equation C.5. First, the marginal origin slope, or
αM , underlying Equation C.4 is a weighted sum of the ST and the intra-destination slope, with
weights given by the relationships between destination and mobility, respectively, with origin. As
noted in the main text, the intra-destination slope compares heterogeneous class-mobility groups,
conflating structural with dynamic inequalities. For example, within a “middle” destination class,
comparing a “low” class groupwith a “high” class group is simultaneously comparing a group that is
upwardly mobile with another that is downwardly mobile. Because the marginal origin slope is in
part a function of the intra-destination slope, we generally do not recommend using estimates from
the marginal origin model.55 Second, when the SM slope is zero (i.e., Γ2 = 0), then the marginal
origin slope will only be a function of the ST slope. In other words, in an absence of any observed
social mobility, the marginal origin model will reflect overall structural inequalities. It is in this
restricted sense that themarginal originmodel could be used.56 Third, the intercept,marginal origin
slope, and origin nonlinearities will all have some degree of bias due to the exclusion of destination
and mobility nonlinearities from Equation C.8.57 Finally, the error term of the marginal origin
model will reflect not just individual-level error, but also unique cell-specific heterogeneity as well
as additional heterogeneity attributable to class destination and mobility.

ii. Marginal Destination Model

More commonly, researchers frequently a model that, while including other covariates, only in-
cludes class destination, omitting class origin and mobility (e.g., Goldthorpe 1999). The marginal
class destination model, arguably the dominant model in sociology and demography, has the fol-
lowing general form:

µrijk = f(D) = µ∗ + β∗
j + ϵ∗rj , (C.6)

where µ∗ is the intercept; β∗
j are parameters for class destination using sum-to-zero deviation (or

“effect”) coding; and ϵ∗rij denotes individual-level error. Using the SDI model as a reference (see
Equation C.1), the class destination model outlined in Equation C.6 can be shown to be equivalent
to the following:

µrijk = (µ+ ξµ)︸ ︷︷ ︸
µ∗

+
(
βM + ξβM

)
(j − j∗) + (β̃j + ξβ̃j

)︸ ︷︷ ︸
β∗
j

+(ϵrijk + ηijk + νijk)︸ ︷︷ ︸
ϵ∗rj

and

βM =
(
Γ1ω(i,j) + Γ2ω(k,j)

)
, (C.7)

where µ is the intercept; Γ1 = α + β is the ST slope and Γ2 = γ + β is the SM slope; βM is the
marginal destination slope; ω(i,j) is the relationship between origin linear component and the des-
tination linear component conditional on the intercept and the destination nonlinear components;
ω(k,j) is the relationship between the mobility linear component and the destination linear compo-
nent conditional on the intercept and the destination nonlinear components; β̃j is the jth destina-
tion nonlinearity; ξµ, ξβM

and ξβ̃j
are bias terms for the intercept, marginal destination slope, and

55One is generally better off using a model of the form f(O,M). For additional discussion on the merits of models
of this general form, see the main text.

56Note that, with data organized by origin, destination, and mobility, one can test whether or not the SM slope is
zero or not using, for example, the SDI model.

57However, because our goal is primarily to conduct a descriptive rather than causal analysis, bias is less of a concern
than understanding what, exactly, is being described with a particular model.
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jth destination nonlinearity; ϵrijk is individual-level error; ηijk denotes unique cell-specific hetero-
geneity; νijk denotes additional heterogeneity attributable to class origin andmobility. The terms in
brackets below Equation C.7 denote the corresponding parameters from the marginal destination
model presented in Equation C.6.

Several main points are particularly noteworthy regarding Equation C.7. First, the marginal
destination slope is a weighted sum of the ST and SM slopes, where the weights are given by the
relationships between class origin and mobility, respectively, with class destination. Intuitively,
this reflects the fact that class destination is a function of both structural and mobility processes.
Accordingly, as an overall index of social stratification, class destination is in general a useful and
informative metric. Second, the intercept, marginal destination slope, and destination nonlinear-
ities will all have some degree of bias due to the exclusion of origin and mobility nonlinearities
from equation C.6. Finally, the error term of the marginal destination model will reflect not only
individual-level error, but also unique cell-specific heterogeneity on the mobility table, as well as
additional heterogeneity attributable to class origin and mobility.

iii. Marginal Mobility Model

The third possible one-factor class model is the marginal class mobility model (e.g., see Chen et al.
2022), which has the following form:

µrijk = f(M) = µ∗ + γ∗k + ϵ∗rk, (C.8)

where µ∗ is the intercept; γ∗j are parameters for class mobility using sum-to-zero deviation (or
“effect”) coding; and ϵ∗rik denotes individual-level error. Using the Diff-SI model as a reference (see
Equation C.2), the mobility model outlined in Equation C.8 can be shown to be equivalent to the
following:

µrijk = (µ+ ψµ)︸ ︷︷ ︸
µ∗

+
(
γM + ψγM

)
(k − k∗) + (γ̃j + ψγ̃k

)︸ ︷︷ ︸
γ∗
k

+(ϵrijk + ηijk + νijk)︸ ︷︷ ︸
ϵ∗rk

and

γM =
(
(Γ1 − Γ2)ω(i,k) + Γ2ω(j,k)

)
, (C.9)

where µ is the intercept; Γ1 −Γ2 = α− γ is the intra-destination slope and Γ2 = γ + β is the SM
slope; γM is the marginal mobility slope; ω(i,k) is the relationship between origin linear component
and the mobility linear component conditional on the intercept and mobility nonlinear compo-
nents;58 ω(j,k) is the relationship between the destination linear component and the mobility linear
component conditional on the intercept andmobility nonlinear components; γ̃k is the kth mobility
nonlinearity; ψµ, ψγM and ψγ̃k are bias terms for the intercept, marginal mobility slope, and kth
mobility nonlinearity; ϵrijk is individual-level error; ηijk denotes unique cell-specific heterogene-
ity; νijk denotes additional heterogeneity attributable to class origin and destination. The terms in
brackets below Equation C.9 denote the corresponding parameters from the marginal destination
model presented in Equation C.8.

As with the class destination model, several points are worth noting regarding Equation C.9.
First, the marginal mobility slope, or γM , underlying Equation C.8 is a weighted sum of the intra-
destination slope and the SM slope, withweights given by the relationships between origin and des-
tination, respectively, with mobility. Again, as noted when discussing the marginal origin model,
the intra-destination slope compares heterogeneous class-mobility groups, conflating structural
with dynamic inequalities. Similarly, because the marginal mobility slope is a function of the intra-
destination slope, we generally do not recommend using estimates from the marginal mobility

58Similar to the corresponding weight in Equation C.5, the relationship between the origin andmobility linear com-
ponents is generally negative, and thus one can write (Γ1 − Γ2)(−ω(i,k)) = (Γ2 − Γ1)ω(i,k) in Equation C.9.
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model. Second, when the ST slope is zero (i.e., Γ2 = 0), then the marginal mobility slope will
only be a function of the SM slope. In other words, in an absence of any overall total social struc-
tural differences, the marginal mobility model will reflect the observed mobility patterns. It is in
this restricted sense that the marginal mobility model could be used.59 Third, as with the marginal
destination model, the intercept, marginal mobility slope, and mobility nonlinearities will all have
some degree of bias due to the exclusion of origin and destination nonlinearities fromEquationC.8.
Lastly, the error term of the marginal mobility model will capture not just individual-level error,
but also unique cell-specific heterogeneity as well as additional heterogeneity attributable to class
origin and destination.

3. Interpreting the Parameters of Two-Factor Class Models

In this section, we clarify the interpretation of the parameters from all three logically possible two-
factor models (origin-destination, destination-mobility, origin-mobility). As with the one-factor
models, we present each two-factor model and discuss the relationship between each model’s pa-
rameters and those of a corresponding model that includes all three factors (see Equations C.1, C.2,
and C.3). Again, to avoid confusion with corresponding terms in the three-factor models outlined
earlier, we use asterisks to denote parameters from two-factor models. It should be emphasized
that we treat thesemodels as descriptive, not causal. In general, our analyses suggest that among the
two-factor models, an origin-mobility model is preferable to an origin-destination or destination-
mobilitymodel. This is because the underlying linear terms of the origin-mobilitymodel are the ST
and SM slopes, which estimate structural and dynamic inequalities, whereas the other two models
generate estimates of within-destination differences that compare heterogeneous origin-mobility
groups.

i. Origin-Destination Model

The origin-destination model, also known as the “square additive model” (Hope 1971, 1975), has
the following general form (cf. Duncan 1966: 94-95):

µrijk = f(O,D) = µ∗ + α∗
i + β∗

j + η∗ij + ϵ∗rij , (C.10)

where µ∗ is the intercept; α∗
i and β∗

j are parameters for origin and destination using sum-to-zero
deviation (or “effect”) coding; η∗ij denotes group-level heterogeneity terms;60 and ϵ∗rij denotes individual-
level error. Using the Diff-SI model (see Equation C.2), the origin-destination model outlined in
Equation C.10 can be shown to be equivalent to the following:

59Note that, with data organized by origin, destination, and mobility, one can test whether or not the ST slope is
zero or not using, for example, the SDI model.

60FollowingDuncan (1966: 94-95), wewill treat the group-level heterogeneity terms for all of the two-factormodels
as orthogonal (see also Ohtaki et al. 1990: 119). These terms can be easily calculated as group-level residuals relative
to a fully-saturated model. With respect to the origin-destination model, as an alternative one can specify all possible
pairs of interactions between origin and destination. If the data are balanced such that there are an equal number of
individual-level observations in each origin-destination cell, then, using sum-to-zero deviation coding or orthogonal
polynomial coding, the residuals will be equivalent to specifying a full set of origin-destination interactions. The reason
for this is that in such a setting the columns for the origin-destination interactions will be orthogonal to themain origin
and destination columns.
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µrijk = (µ+ ψµ)︸ ︷︷ ︸
µ∗

+
(
(Γ1 − Γ2) + ψ(Γ1−Γ2)

)
(i− i∗) + (α̃i + ψα̃i

)︸ ︷︷ ︸
α∗

i

+ (Γ2 + ψΓ2)(j − j∗) + (β̃j + ψβ̃j
)︸ ︷︷ ︸

β∗
j

+(ηijk + νijk)︸ ︷︷ ︸
η∗
ij

+ ϵrijk︸︷︷︸
ϵ∗rij

, (C.11)

where µ is the intercept; Γ1 − Γ2 = α − γ is a slope of intra-destination differences; Γ2 is the
DI slope; α̃i is the ith origin nonlinearity; β̃j is the jth destination nonlinearity; ψµ, ψ(Γ1−Γ2), ψΓ2 ,
ψα̃i

, and ψβ̃j
are bias terms for the intercept, intra-destination slope, DI slope, ith origin nonlin-

earity, and jth destination nonlinearity; ηijk denotes terms for unique cell-specific heterogeneity;
νijk denotes terms for unique mobility-attributed heterogeneity; and ϵrijk is individual-level er-
ror. The terms in brackets below Equation C.11 denote the corresponding parameters from the
origin-destination model presented in Equation C.10.

Three main points stand out from Equation C.11. First, the intercept, origin, and destination
parameters will all have some degree of bias due to the exclusion of the mobility nonlinear com-
ponents from the origin-destination model.61 Second, assuming that there is no bias due to the
exclusion of the mobility nonlinearities, either because the mobility nonlinearities are zero or the
mobility variables are unrelated to the variables for the intercept, origin, and destination terms (i.e.,
the included variables), then the underlying origin and destination slopes of the origin-destination
model will equal those from the Diff-SI model. In other words, the origin-destination model will
generate a slope of intra-destination differences. For this reason we do not generally recommend
using the origin-destination model without extreme care in the interpretation of the origin param-
eters in Equation C.10. Finally, the group-level heterogeneity terms η∗ij from the origin-destination
model equal the sum of the unique cell-specific heterogeneity terms from the Diff-SI model, ηijk ,
and the uniquemobility-attributed heterogeneity termsνijk. Themobility-attributed heterogeneity
terms are simply the predicted values from the parameters for the mobility nonlinear components
(i.e., the excluded variables) using that part of the mobility variables that is unassociated with the
variables for the intercept, origin, and destination terms (i.e., the included variables).

ii. Destination-Mobility Model

The second logically possible two-factor model is the destination-mobility model, which has the
following general form:

µrijk = µ∗ + β∗
j + γ∗k + η∗jk + ϵ∗rjk, (C.12)

where µ∗ is the intercept; β∗
j and γ∗k are parameters for destination andmobility using sum-to-zero

deviation coding; η∗jk denotes group-level heterogeneity terms; and ϵ∗rjk is individual-level error.
Using the DI-Diff model (see Equation C.3), the destination-mobility model outlined in Equation
C.12 can be shown to be equal to the following:

61Note that the individual-level η∗rik error term is unbiased. The reason for this is that the origin-destination model
with the group-level heterogeneity terms is saturated, so the individual-level error will be the same as that from the
Diff-SI model with unique heterogeneity terms, which is also saturated. Again, because our focus here is on descriptive
rather than causal models, we are less concerned about the parameters being biased than that researchers have a clear
idea of what is being estimated in the models.

Online Supplement - page S-16



µrijk = (µ+ ϕµ︸ ︷︷ ︸
µ∗

) + (Γ1 + ϕΓ1
)(j − j∗) + (β̃j + ϕβ̃j

)︸ ︷︷ ︸
β∗
j

+
(
(Γ2 − Γ1) + ϕ(Γ2−Γ1)

)
(k − k∗) + (γ̃k + ϕγ̃k

)︸ ︷︷ ︸
γ∗
k

+(ηijk + νijk︸ ︷︷ ︸
η∗
jk

) + ϵrijk︸︷︷︸
ϵ∗rjk

, (C.13)

whereµ is the intercept; Γ1 = α+β is the ST slope; Γ2−Γ1 = γ−α is the intra-destination slope;
β̃j is the jth destination nonlinearity; γ̃k is the kth mobility nonlinearity; ϕµ, ϕΓ1 , ϕ(Γ2−Γ1), ϕβ̃j

,
and ϕγ̃k are bias terms for the intercept, ST slope, intra-destination slope, jth destination nonlin-
earity, and kthmobility nonlinearity; ηijk denotes terms for unique cell-specific heterogeneity; νijk
denotes terms for unique origin-attributed heterogeneity; and ϵrijk is individual-level error. The
terms in brackets below Equation C.13 denote the corresponding parameters from the destination-
mobility model displayed in Equation C.12.

As with the origin-destination model, there are three main conclusions that follow from Equa-
tion C.11. First, as indicated by the presence of the ϕ parameters, the intercept, destination, and
mobility parameters will be biased because of the exclusion of the origin nonlinearities from the
destination-mobility model. Second, assuming that excluding the mobility nonlinearities results
in no bias, then the underlying destination and mobility slopes will equal those from the DI-Diff
model. Lastly, the group-level heterogeneity terms η∗jk equal the sum of the unique cell-specific
heterogeneity terms from the DI-Diff model, ηijk , and the unique origin-attributed heterogeneity
terms νijk. Similar to the origin-destination model, the origin-attributed heterogeneity terms are
just the predicted values from the parameters for the origin nonlinear components (i.e., the excluded
variables) using that part of the origin variables that is unrelated to the variables for the intercept,
destination, and mobility terms (i.e., the included variables).

iii. Origin-Mobility Model

The remaining two-factor model is the origin-mobility model, which has the following general
form:

µrijk = µ∗ + α∗
i + γ∗k + η∗ik + ϵ∗rik, (C.14)

where µ∗ is the intercept; α∗
i and γ∗k are parameters for origin and mobility using sum-to-zero

deviation coding; η∗ik denotes group-level heterogeneity terms; and ϵ∗rik is individual-level error.
Using the SDI model (see Equation C.1), the origin-mobility model presented in Equation C.14 is
shown to be equivalent to the following:

µrijk = (µ+ ξµ︸ ︷︷ ︸
µ∗

) + (Γ1 + ξΓ1
)(i− i∗) + (α̃i + ξα̃i

)︸ ︷︷ ︸
α∗

i

+
(
Γ2 + ξΓ2

)
(k − k∗) + (γ̃k + ξγ̃k

)︸ ︷︷ ︸
γ∗
k

+(ηijk + νijk︸ ︷︷ ︸
η∗
ik

) + ϵrijk︸︷︷︸
ϵ∗rik

, (C.15)

where µ is the intercept; Γ1 = α + β is the ST slope; Γ2 = γ + β is the SM slope; α̃i is the ith
origin nonlinearity; γ̃k is thekthmobility nonlinearity; ξµ, ξΓ1 , ξΓ2 , ξα̃i

, and ξγ̃k are bias terms for the
intercept, ST slope, SM slope, ith origin nonlinearity, and kth mobility nonlinearity; ηijk denotes
terms for unique cell-specific heterogeneity; νijk denotes terms for unique destination-attributed
heterogeneity; and ϵrijk is individual-level error. The terms in brackets below Equation C.15 refer
to the corresponding parameters from the origin-mobility model shown in Equation C.14.
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Aswith the other two-factormodels, there are threemain takeaways fromEquation C.15. First,
the intercept, origin, and mobility parameters will be biased because of the exclusion of the origin
nonlinearities from the origin-mobility model. Second, assuming that excluding the destination
nonlinearities produces no bias, then the underlying origin and mobility slopes will equal those
from the SDI model. Finally, the group-level heterogeneity terms η∗ik equal the sum of the unique
cell-specific heterogeneity terms from the SDI model, ηijk , and the unique destination-attributed
heterogeneity terms νijk. The destination-attributed heterogeneity terms are, like those for the
other two-factor models, simply the predicted values from the parameters for the destination non-
linearities (i.e., the excluded variables) using that part of the destination variables that is unrelated
to the variables for the intercept, origin, and mobility terms (i.e., the included variables).

4. Derivation of Relationships

In this section we show how the relationships outlined above can be derived using matrix algebra
and the logic of omitted variable bias. We first present the derivation for the one-factor formulas
using the one-factor destination model as an example. Next, we show the derivation for the two-
factor models using the origin-destination model (i.e., Duncan’s “square additive model”).

i. Derivation for One-Factor Models

To show the derivation for the one-factor models, we using the class destination model, but similar
calculations can be applied to derive the one-factor origin and mobility models. Suppose we fit
the one-factor destination model (Equation C.6) on an individual-level data set indexed by origin,
destination, and mobility. To reveal the underlying structure of the model, it is useful to express
Equation C.6 as a linearized destination model, which decomposes each deviation from the overall
mean into its constitutive linear and nonlinear components:

µrijk = f(D) = µ∗ + β∗(j − j∗) + β̃∗
j + ϵ∗rj , (C.16)

where the parameters are the same as in Equation C.6 except β∗ denotes the destination slope and
β̃∗
j the jth destination deviation from the overall mean. Because only the coding scheme differs be-

tween Equation C.16 and Equation C.6, we will refer to them interchangeably as a class destination
model in the following discussion.

Let y denote anR×1 column vector of outcome values (e.g., means), 1 anR×1 column vector
of 1’s, dL anR×1 column vector of the class destination linear component, and D̃ anR× (J −2)
matrix of orthogonal destination polynomials with no linear component. Using matrix notation,
the marginal destination model in Equation C.16 can be expressed as follows:

y = 1µ∗ + dLβ
∗
L + D̃β̃ββ

∗
+ ϵϵϵ∗. (C.17)

where µ∗ is again the intercept, β∗
M is the estimated marginal destination slope, β̃ββ

∗
is a (J − 2)× 1

column vector of nonlinear destination parameters, and ϵϵϵ∗ is anR×1 column vector of individual-
level error terms.

For the purposes of comparison, note that the SDI model (see Equation C.1) can be specified in
matrix form as:

y = 1µ+Oααα +Mγγγ + D̃β̃ββ + ηηη + ϵϵϵ, (C.18)

where µ is the intercept, O is an R × (I − 1) matrix of orthogonal origin polynomials, ααα is an
(I − 1)× 1 column vector of linear and nonlinear origin parameters,M is anR× (K − 1)matrix
of orthogonal mobility polynomials, γγγ is a (K − 1) × 1 column vector of linear and nonlinear
mobility parameters, D̃ is an R × (J − 2)matrix of orthogonal destination polynomials without
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the linear component, β̃ββ is a (J − 2) × 1 column vector of nonlinear destination parameters, ηηη is
an R × 1 column vector of cell-specific heterogeneity terms, and ϵϵϵ is an R × 1 column vector of
individual-level error terms.

To clarify the interpretation of the marginal destination model, we need to specify an auxiliary
equation that expresses the association between those variables included in themarginal destination
model and those excluded from the marginal destination model but included in the SDI model. To
do so, we first define a matrix S of dimension J × (I +K − 2) as follows:

S = (X
′
X)−1X

′
Z, (C.19)

whereX = [1 dL D̃] is anR×J matrix of 1’s, the destination linear component, and higher-order
orthogonal destination polynomials; andZ = [O,M] is anR× (I +K− 2)matrix of orthogonal
origin and mobility polynomials. The matrix S is simply a collection of parameters representing
relationships between those variables included in the marginal destination model (X) and those
variables excluded from the marginal destination model but included in the SDI model (Z). Using
Z, S, and X, we can accordingly define an auxiliary equation compactly as Z = XS + UZ or,
equivalently:

[O,M] = 1sµ + dLsdL + D̃SD̃ +U[O,M ], (C.20)

where sµ is a 1× (I +K − 2) row vector of parameters, sdL is a 1× (I +K − 2) row vector of
parameters,SD̃ is a (J−2)× (I+K−2)matrix of parameters, andU[O,M ] is anR× (I+K−2)
matrix of error terms representing that part of O and M unrelated to the variables included in
the marginal destination model (i.e., the intercept, destination linear component, and higher-order
destination polynomials).62

To clarify themeaning of the parameters of themarginal destinationmodel (Equation C.17), we
can simply substitute Equation C.20 into Equation C.17. This is easily accomplished by re-writing
Equation C.18 as y = 1µ + Zζζζ + D̃β̃ββ + ηηη + ϵϵϵ, where ζζζ is an (I +K − 2)× 1 column vector of
origin and mobility parameters such that:

ζζζ =

(
ααα
γγγ

)
We then just plug inZZZ = 1sµ + dLsdL + D̃SD̃ +UZ into this equation. After rearranging terms,
we obtain the following:

y = 1 (µ+ sµζζζ)︸ ︷︷ ︸
µ∗

+dL (sdLζζζ)︸ ︷︷ ︸
β∗
L

+D̃ (β̃ββ + SD̃ζζζ)︸ ︷︷ ︸
β̃ββ
∗

+ ϵϵϵ+ ηηη +UZζζζ︸ ︷︷ ︸
ϵϵϵ∗

, (C.21)

which reveals how the SDI model is related to the marginal destination model. Several points are
worth emphasizing. First, the marginal destination term is a weighted sum of the ST and SM slopes
(which are contained in ζζζ), with weights given by the relationships between the destination linear
component and the origin and mobility linear components (which are contained in the row vector
sdL ). Second, the parameters from the marginal destination model will all have some degree of bias
due to the exclusion of the origin andmobility components. Depending on the structure of the data,
the origin and mobility polynomials in Z will be more or less associated with the set of included
variables, namely, the vector 1, destination linear component dL, and higher-order destination
polynomials D̃.63 If these relationships are strong, then the bias will be large, and the parameter

62Note that sµ is simply the first row of S, sdL
is the second row, and SD̃ is rows 3 to J of S.

63However, note that, because themarginal destination slope is defined by theweighted sumof the ST and SMslopes,
the bias for the marginal destination slope is a function of only the relationship between the included variables and the
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estimates for the intercept and destination nonlinear terms from the marginal destination model
and the SDI models will differ, possibly quite substantially. By contrast, if these relationships are
weak, then the bias will be relatively small, such that the intercept and destination nonlinear terms
of the marginal destination model will be approximately equal to those from the SDI model. Lastly,
the individual-level error term of the marginal destination model can (ϵϵϵ∗) be interpreted as the sum
of individual-level error term from the SDI model, the unique cell-specific heterogeneity terms ηηη,
and the column vector of origin and mobility parameters ζζζ , the latter of which are weighted by
UZ , or that part of the excluded variables (i.e., the orthogonal origin and mobility polynomials)
unrelated to the variables included in the marginal destination model.

ii. Derivation for Two-Factor Models

We illustrate the derivation for the two-factor models using the origin-destination model, but sim-
ilar calculations can be applied to the destination-mobility and origin-mobility models. Suppose
we fit the origin-destination model (Equation C.10) on an individual-level data set indexed by ori-
gin, destination, and mobility. To reveal the underlying structure of the model, it is useful to ex-
press Equation C.10 as a linearized origin-destinationmodel with group-level heterogeneity terms,
which decomposes each deviation from the overall mean into its constitutive linear and nonlinear
components:

µrijk = µ∗ + α∗(i− i∗) + α̃∗
i + β∗(j − j∗) + β̃∗

j + η∗ij + ϵ∗rij , (C.22)

where the parameters are the same as in Equation C.10 except α∗ denotes the origin slope, α̃∗
i the

ith origin deviation from the overall mean, β∗ the destination slope, and β̃∗
j the jth destination de-

viation from the overall mean. Because Equation C.22 is the same as that in Equation C.10, but with
a different coding scheme, we will refer to them interchangeably as an origin-destination model in
the discussion that follows.

Let y denote an R × 1 column vector of outcome values (e.g., means), 1 an R × 1 column
vector of 1’s,O an R × (I − 1)matrix of orthogonal origin polynomials, andD an R × (J − 1)
matrix of orthogonal destination polynomials. Usingmatrix notation, the origin-destinationmodel
in Equation C.22 can be expressed as follows:

y = 1µ∗ +Oααα∗ +Dβββ∗ + ηηη∗ + ϵϵϵ∗. (C.23)

where µ∗ is again the intercept,ααα∗ is an (I − 1)× 1 column vector of linear and nonlinear origin
parameters,βββ∗ is a (J − 1)× 1 column vector of linear and nonlinear destination parameters, ηηη∗ is
anR×1 column vector of group-level heterogeneity parameters, and ϵϵϵ∗ is anR×1 column vector
of individual-level error terms.

For the purposes of comparison, note that the DI-Diff model (see Equation C.3) can be specified
in matrix form as:

y = 1µ+Oααα +Dβββ + M̃γ̃γγ + ηηη + ϵϵϵ, (C.24)

whereµ is the intercept,ααα is an (I−1)×1 column vector of linear and nonlinear origin parameters,
βββ is a (J−1)×1 column vector of linear and nonlinear destination parameters, M̃ anR×(K−2)
matrix of orthogonal mobility polynomials with no linear component, γ̃γγ is a (K − 2)× 1 column
vector of nonlinear mobility parameters, ηηη is anR× 1 column vector of cell-specific heterogeneity
terms, and ϵϵϵ is anR× 1 column vector of individual-level error terms.

Similar to the calculations for the marginal destination model in the previous section, to inter-
pret the meaning of the parameters of the origin-destinationmodel, we need to specify an auxiliary
equation that expresses the association between those variables included in the origin-destination

origin and mobility polynomials without the linear component.
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model and those excluded from the origin-destinationmodel but included in the DI-Diff model. As
before, we can define a matrixS of dimension (I+J−1)× (K−2) asS = (X

′
X)−1X

′
Z, where

X = [1 O D] is an R × (I + J − 1) matrix of 1’s, orthogonal origin polynomials, and orthogo-
nal destination polynomials; and Z = M̃ is an R × (K − 2) matrix of orthogonal class mobility
polynomials with no linear component. Again, the matrix S is simply a collection of parameters
representing relationships between those variables included in the origin-destination model (X)
and those variables excluded from the origin-destination model but included in the Diff-SI model
(Z). UsingZ,S, andX, we can accordingly define an auxiliary equation compactly asZ = XS+UZ

or, equivalently:

M̃ = 1sµ +OSO +DSD +UM̃ , (C.25)

where sµ is a 1×(K−2) row vector of parameters,SO is an (I−1)×(K−2)matrix of parameters,
SD is a (J − 1)× (K− 2)matrix of parameters, andUM̃ is anR× (K− 2)matrix of error terms
representing that part of M̃ unrelated to the variables included in the origin-destination model.64

To clarify the meaning of the parameters of the origin-destination model (Equation C.22), we
can simply substitute Equation C.25 into Equation C.23. After substituting and rearranging terms,
we obtain the following equation:

y = 1 (µ+ sµγ̃γγ)︸ ︷︷ ︸
µ∗

+O (ααα + SOγ̃γγ)︸ ︷︷ ︸
ααα∗

+D (βββ + SDγ̃γγ)︸ ︷︷ ︸
βββ∗

+(ηηη +UM̃γ̃γγ)︸ ︷︷ ︸
ηηη∗

+ ϵϵϵ︸︷︷︸
ϵϵϵ∗

, (C.26)

which reveals how theDiff-SImodel is related to the origin-destinationmodel. As noted previously,
the intercept, origin, and destination parameters from the origin-destination model will all have
some degree of bias due to the exclusion of the mobility nonlinear components. Depending on
the structure of the data, the orthogonal mobility polynomials in M̃ will be more or less related
to the vector 1, orthogonal origin polynomials O, and orthogonal destination polynomials D. If
these relationships are strong, then the bias will be large, and the parameter estimates from the
origin-destination and the Diff-SI models will differ, possibly quite substantially. By contrast, if
these relationships are weak, then the bias will be relatively small, such that the intercept, origin,
and destination parameters of the origin-destination model will be approximately equal to those
from the Diff-SI model. Similarly, the vector of group-level heterogeneity terms ηηη∗ in the origin-
destination model, which can be interpreted as a restricted set of origin-destination interactions, is
equal to a weighted sum of the cell-specific heterogeneity terms ηηη and the mobility nonlinearities
γ̃γγ, the latter of which are weighted byUM̃ , or that part of the excluded variables (i.e., the orthogonal
mobility polynomials without the mobility linear component dropped) unrelated to the variables
included in the origin-destination model.

Equation C.26 additionally clarifies how the mobility nonlinearities can be viewed as a kind
of “structured” interaction with respect to origin and destination.65 We can show this relationship
by taking the equation ηηη∗ = ηηη + UM̃γ̃γγ and solving for γ̂γγ, the mobility nonlinearities from the
Diff-SI model. Because UM̃ is non-square, it does not have a regular inverse. However, it has a
Moore-Penrose generalized inverse that is equal to the left inverse ofUM̃ . Solving for γ̃γγ gives us
the following:

γ̃γγ = U+

M̃
(ηηη∗ − ηηη) = (U

′

M̃
UM̃)−1U

′

M̃
(ηηη∗ − ηηη)

= (U
′

M̃
UM̃)−1U

′

M̃
ηηη∗ (C.27)

64Note that sµ is simply the first row of S, SO is rows 2 to I of S, and SD is rows I + 1 to I + J − 1 of S.
65What thismeans in practice is that the SDImodel outlined in themain text is, in fact, interactive in the data although

it is additive in the parameters.
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where the plus + denotes a Moore-Penrose generalized inverse and (U
′
MUM̃)−1U

′

M̃
is the left

inverse of UM̃ .66 Equation C.27 reveals that the mobility nonlinearities are equal to a regression
model predicting heterogeneity from origin-destination interactions using that part of the orthog-
onal mobility polynomials unrelated to the intercept, origin, and destination variables included in
the origin-destination model.67 Similar derivations as those outlined in this section can be con-
ducted in an analogous way for the destination-mobility and origin-mobility models.68

5. Higher-Order Interactions on a Mobility Table

So far little has been stated about the structure of the higher-order interactions beyond that for
origin, destination, and mobility (i.e., the η terms in the various models discussed above). In this
section we discuss higher-order interactions on mobility tables. As we illustrate, only a limited
number of interactions can be included beyond the main set of parameters for origin, destination,
and mobility. This reflects the fact that, descriptively, including all three main parameters means
there is already a structured interaction captured by a three-factor model.

To illustrative the limited number of interactions that included, suppose we use orthogonal
polynomial contrasts so that we have I − 2, J − 2, andK − 2 columns for the higher-order terms
of origin, destination, and mobility, respectively. Then the SDI model69 can be represented as:

Yrijk = µ+ (α+ β)oL + (γ + β)mL +

I−1∑
i=2

αioi +

J−1∑
j=2

βjdj +

K−1∑
k=2

γkmk + ηijk + ξrijk, (C.28)

where ηijk are cell-specific heterogeneity terms and ξrijk are individual-level errors. We treat these
as residual (or orthogonal) to the main parameters in the model in the discussions above (see also
Duncan 1966).

However, an alternative representation of the ηijk terms is to specify them as higher-order in-
teractions. However, because of the linear dependency among the variables, only a restricted set of
interactions can be included (for a similar point, see Mason and Fienberg 1985). Specifically, given
an origin-destination mobility table, one can specify the ηijk terms as follows:

ηijk =

J−1∑
j=2

ψLj(oLdj) +

I−2∑
i=2

J−1∑
j=2

ψij(oidj) (C.29)

where the number of additional parameters above the baseline SDI model are (I−2)(J−2). Note
that these additional terms represent interactions of a smoothed origin curve with the destination

66Note that we can drop ηηη from Equation C.27 because, by construction (see Equation C.1), it is unrelated to the
orthogonal mobility polynomials such that (U

′

M̃
U

M̃
)−1U

′

M̃
ηηη will produce aK − 2 column vector of zeros.

67Themore themobility variables are related to the heterogeneity from the origin-destination interactions, the larger
in absolute value the size of the mobility nonlinearities. Note further that if the mobility variables are unrelated to the
variables included in the origin-destination model, then U

M̃
= M̃. Accordingly, Equation C.27 simplifies further

to (M̃
′
M̃)−1M̃

′
ηηη∗. In other words, assuming the included and excluded variables are unrelated, we can simply take

the mobility variables and use them to predict the heterogeneity from the origin-destination interactions to obtain the
mobility nonlinearities. To the extent that the mobility variables are only weakly related to the intercept, origin, and
destination variables in the origin-destination model, then this procedure will reproduce, within an error of approxi-
mation, the mobility nonlinearities from the Diff-SI model.

68However, note that, because there is inherent censoring on amobility table with respect tomobility, one cannot in-
clude all mathematically pairwise interactions in a destination-mobility or origin-mobilitymodel By contrast, although
we have treated origin-destination interactions as cell-specific residuals, one could model them as all possible pairwise
interactions on a mobility table.

69We use the SDI model for illustrative purposes here, but our results apply to any of the models discussed above.
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nonlinear components. These interactions could be reversed so that the parameters represent in-
teractions of a smoothed destination curve with a full set of origin nonlinear components.

To illustrate how the additional terms can be included in an L-APCModel, consider data from
an origin-destination mobility table. Given a mobility table, one can incorporate additional het-
erogeneity using the particular set of origin-destination interactions outlined in Equation C.29.
The ψLj parameters are interactions terms between the origin linear component and the destina-
tion nonlinear components, while theψij parameters are interactions between the origin nonlinear
components (except for the last origin nonlinear component) and the destination nonlinear com-
ponents. This allows a smoothed origin curve to vary as a function of the destination nonlinear
components.

To show what the full SDI model with higher-order origin-destination interactions would be,
suppose there are I = 5 origin groups and J = 5 destination groups (and thusK = I+J−1 = 9
mobility groups). Above the baseline SDI model, we can include (I − 2)(J − 2) = 9 additional
parameters representing particular origin-destination interactions. Then the SDI model with fully
specified higher-order origin-destination interactions is:

µrijk = µ+ (γ + β)mL + (α+ β)oL + α2o2 + . . . α4o4 + β2d2 + . . . β4d4 + γ2m2 + . . . γ8m8+

βL2(oLd2) + βL3(oLd3) + βL4(oLd4) + β22(o2d2) + β23(o2d3) + β24(o2d4)+

β32(o3d2) + β33(o3d3) + β34(o3d4) + ξrijk, (C.30)

where the additional terms represent intra-mobility heterogeneity, or heterogeneity with the di-
agonals of the mobility table. However, we caution against indiscriminately including these higher
order terms directly in themainmodelwithout checking formulticollinearity. In general, including
these additional interactions results in a full-rank design matrix (and thus the model is identified),
but in practice these additional columns are highly collinear with the main columns of the baseline
SDI model, resulting in highly unstable estimates.
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Online Appendix D: Prior Contributions Using the DRM

As shown in Figure 1 of the main text, the DRM has been widely and increasingly used to estimate
the effects of social mobility on a wide range of outcomes. In this appendix, we provide a schematic
summary of the topics addressed in these contributions and the general direction of effects that have
been estimated. The tables below highlight the findings from the key studies upon which Figure 1
rests.

Table D.1: Social and Cultural Attitudes

Author Year Outcome Measure(s) Null + − NC

Kulis 1987 Attitudes towards family X X
Marshall and Firth 1999 Life satisfaction X
Tolsma et al. 2009 Ethnic attitudes X X
Coulangeon 2013 Musical taste X
Daenekindt and Roose 2013 Aesthetic dispositions X X
Daenekindt and Roose 2014 Musical taste X
Coulangeon 2015 Musical taste X X
Turner 2017 Musical taste X
Sieben 2017 Child-rearing values X
Domański and
Karpiński 2018 Culinary taste X

Schaeffer 2019 Discrimination percep-
tion X

Rotengruber and
Tyszka 2021 Musical taste X

Creighton et al. 2022 Attitudes towards immi-
gration X X

Mijs et al. 2022 Meritocratic beliefs X
Notes: Positive effects are given by +, negative effects by −, and zero or near-zero effects by “Null.”

Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Table D.2: Health

Author Year Outcome Measure(s) Null + − NC

Monden and de Graaf 2013 Self-assessed health X
Missinne et al. 2015 Health care use X
Yang 2016 Smoking and drinking X
van der Waal et al. 2017 Obesity X
Billingsley and
Matysiak 2018 Fertility X

Dennison 2018 Drug use X
Präg and Richards 2018 Stress biomarkers X
Tarrence 2018 Self-rated health X X

Steiber 2019 Subjective health satis-
faction X

Gugushvili et al. 2020 Smoking and drinking X
Yang 2020 Smoking X X
Veenstra and
Vanzella-Yang 2021 Self-rated health X

Zelinska et al. 2021 Self-rated health X
Bulczak and Gugushvili 2022 Cardiometabolic risk X
Bulczak et al. 2022 Various health measures X
Graf et al. 2022 Biological aging X
Iveson et al. 2022 Self-rated health X
Kempel et al. 2022 Cardiometabolic risk X
Luo 2022 Fertility X
Tarrence 2022 Self-rated health X
Notes: Positive effects are given by +, negative effects by −, and zero or near-zero effects by “Null.”

Those effects that are indeterminate are given as “NC” (Not Classifiable).

Online Supplement - page S-25



Table D.3: Political Outcomes

Author Year Outcome Measure(s) Null + − NC

De Graaf et al. 1990 Left/Right preferences X
Weakliem 1992 Left/Right voting X
Clifford and Heath 1993 Left/Right voting X
Nieuwbeerta and Graaf 1993 Left/Right voting X
Breen and Whelan 1994 Left/Right preferences X X
Graaf et al. 1995 Left/Right preferences X
Nieuwbeerta, Paul 1995 Left/Right voting X
Nieuwbeerta et al. 2000 Left/Right voting X
Breen 2001 Left/Right preferences X X
Paterson 2008 Left/Right attitudes X
Daenekindt et al. 2018 Trust X X
Yan 2019 Political Participation X
Jaime-Castillo and
Marqués-Perales 2019 Redistribution prefer-

ences X

Kraus and Daenekindt 2022 Attitudes towardsmulti-
culturalism X

McNeil 2022 Left/Right attitudes X X
Mcneil and Haberstroh 2022 Opinion on Brexit X

Wilson et al. 2022 Redistribution prefer-
ences X

Notes: Positive effects are given by +, negative effects by −, and zero or near-zero effects by “Null.”
Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Table D.4: Psychological Wellbeing

Author Year Outcome Measure(s) Null + − NC

Houle and Martin 2011 Psychological distress X
Zang & de Graaf 2016 Happiness X
Daenekindt 2017 Dissociation X X
Schuck and Steiber 2018 Subjective well-being X

Dhoore et al. 2019 Life-satisfaction, de-
pression X

Gugushvili et al. 2019 Depression X
Jasper et al. 2019 Life-satisfaction X
Schuck 2018 Subjective well-being X X
Zhao and Li 2019 Subjective well-being X

Engzell and Ichou 2020
subjective social status,
perceived financial situ-
ation

X

Gugushvili et al. 2021 Allostatic load X
Kaiser and Trinh 2021 Life-satisfaction X
Zelinska et al. 2021 Subjective well-being X
Kwon 2022 Subjective well-being X
Notes: Positive effects are given by +, negative effects by −, and zero or near-zero effects by “Null.”

Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Online Appendix E: Further Simulations of the Bias in the DRM

Here we present results from simulations with various values of the nonlinear effects for origin and
destination. Note that in these simulations we assume that the proportionality constraint holds for
the nonlinear origin and destination effects, but not necessarily for their respective linear effects.
Regardless of the nonlinear effects, in each simulation we assume that the origin and destination
linear effects are of the same magnitude and direction. We present the nonlinear effects in terms of
squared components, but similar results could be obtained using alternative representations of the
nonlinearities (e.g., deviations from the linear effects). To clarify the sensitivity of the DRM to the
nonlinear effects, in all simulations we keep the true origin, destination, and mobility linear effects
fixed at 0.250. The top half of Table E.1 displays the results across different values of the quadratic
origin parameter, while the bottom shows the results across different values of the quadratic desti-
nation parameter. As with the previous tables of simulations, the shaded rows denote those specific
simulations in which the data generating parameters happen to be recovered by the DRM.

Table E.1: Sensitivity of Estimated Mobility Linear Effect
to Values of True Origin and Destination Nonlinear Effects

True DGP DRM Estimates Bias of γ̂

α2 β2 γ α̂ β̂ γ̂ (β)(ŵo) − (α)(ŵd) = γ̂ − γ

Varying α2: 0.000 0.050 0.250 0.000 0.500 0.000 (0.250)( 0.0500.050 ) − (0.250)( 0.0000.050 ) = 0.250

0.050 0.050 0.250 0.250 0.250 0.250 (0.250)( 0.0500.100 ) − (0.250)( 0.0500.100 ) = 0.000

0.100 0.050 0.250 0.333 0.167 0.333 (0.250)( 0.1000.150 ) − (0.250)( 0.0500.150 ) = 0.083

0.250 0.050 0.250 0.417 0.083 0.417 (0.250)( 0.2500.300 ) − (0.250)( 0.0500.300 ) = 0.167

0.500 0.050 0.250 0.455 0.046 0.455 (0.250)( 0.5000.550 ) − (0.250)( 0.0500.550 ) = 0.205

1.000 0.050 0.250 0.476 0.024 0.476 (0.250)( 1.0001.050 ) − (0.250)( 0.0501.050 ) = 0.226

Varying β2: 0.050 0.000 0.250 0.500 0.000 0.500 (0.250)( 0.0500.050 ) − (0.250)( 0.0000.050 ) = 0.250

0.050 0.050 0.250 0.250 0.250 0.250 (0.250)( 0.0500.100 ) − (0.250)( 0.0500.100 ) = 0.000

0.050 0.100 0.250 0.167 0.333 0.167 (0.250)( 0.0500.150 ) − (0.250)( 0.1000.150 ) = −0.083

0.050 0.250 0.250 0.083 0.417 0.083 (0.250)( 0.0500.300 ) − (0.250)( 0.2500.300 ) = −0.167

0.050 0.500 0.250 0.046 0.455 0.046 (0.250)( 0.0500.550 ) − (0.250)( 0.5000.550 ) = −0.205

0.050 1.000 0.250 0.024 0.476 0.024 (0.250)( 0.0501.050 ) − (0.250)( 1.0001.050 ) = −0.226

Notes: Number of origin and destination groups is set at I = 5 and J = 5, respectively, for all simulations. Sample
size for each simulation isR = 5, 958. Shaded rows indicate that the DRM recovers the truemobility linear effect.
For all simulations the true origin and destination linear effects are fixed at 0.250 and the true nonlinear effects
other than α2 and β2 are fixed at zero. For simplicity, and without loss of generality, we assume no random error.
For all simulationswe assume that the true origin and destination linear effects areα = β = 0.250. The bias arises
due to the fact that the underlying origin and destination linear effects do not obey the proportionality constraints
of the estimated weights, which are a function of the underlying nonlinear effects. For example, in the top row the
estimated weights for origin and destination are ŵo = 1.000 and ŵd = 0.000, respectively. Yet the actual weights
needed to recover the true origin and destination effects arewo = 0.500 andwd = 0.500, respectively.
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OnlineAppendixF:AdditionalComplications forPoint-IdentifiedorPartially-
Identified Mobility Effects

So far little has been stated about the meaning of a mobility “effect.” In this Appendix we outline
the conceptualization of a mobility effect implied by the conventional mobility effects literature,
outlining a number of challenges.

Graphical Causal Models

Figure F.1 presents the basic setup of a mobility effects model in terms of directed acyclic graphs
(DAGs). As is common in the sociological literature, we treat these DAGs as the graphical em-
bodiment of Pearl’s (2009) nonparametric structural equation models (NPSEMs), using them to
explicitly encode the underlying causal structure among the relevant variables. Panel (a) shows the
graphical model for the causal effects of the origin (O∗), destination (D∗), and mobility (M∗) un-
derlying factors on an outcome (Y ) along with a background variable (X ).70 Filled circles denote
observed variables while hollow circles denote unobserved variables. Note that, because the causal
factors are unobserved, they are denoted with hollow circles. As well, for simplicity of presenta-
tionwe have omitted idiosyncratic causes that affect the three underlying, unobserved factors (UO∗ ,
UD∗ , UM∗ ) and the outcome (UY ).

In a conventional mobility effects analysis, the observed variablesO,D, andM , which have the
natural relationshipD = O +M , are substituted for the underlying causal variables O∗,D∗, and
M∗. This scenario is shown in panel (b) of Figure F.1. The double lines indicate the linear depen-
dency among the dimensions, such thatD := O +M , where := means “is defined as.” Note that
these variables, unlike O∗,D∗, andM∗, are observed, as indicated by the solid points. As well, the
observed variables O,D, andM are not affected by idiosyncratic causes, as they are deterministi-
cally related dimensions of the mobility table.

As we have discussed in previous sections, the scenario in Figure F.1(b) is highly problematic
because of the linear dependence among origin, destination, and mobility. Even assuming that the
underlying, unobserved factors are additive, with minimal interactions,71 there is still not enough
information to uniquely estimate all three causal effects. In operational terms, this means that we
can only condition on two of the three variables (or, more precisely, their linear components). This
is clearly a problem, as the graphical model in Figure F.1 shows that estimating just two of the three
causal effects will lead to biased estimates.

For the sake of the present discussion, however, let us assume that we have somehow obtained
the underlying causal factorsO∗,D∗, andM∗. Suppose further that we are somehow able to obtain
estimates that correspond to causal graph in Figure F.1 (a). Even in such an idealized scenario, seri-
ous problems remain in interpreting the estimates of these effects. We outline four such problems
below. It is important to understand that these issues arise in all models of mobility effects, and add
a further layer of complexity to identification and estimation.

70As outlined previously, in conventional models of mobility effects, origin, destination, and mobility are implicitly
treated as surrogates for unobserved factors that actually generate an outcome of interest. Again, letO∗,D∗, andM∗

denote underlying causal factors that are allowed to freely vary from each other such thatD∗ ̸= O∗ +M∗.
71It is important to note that saying that O∗,D∗, andM∗ are additive is not the same as saying that O,D, andM

are additive. The reason is that the unobserved factors lie on a three-dimensional tensor, while the observed dimen-
sions lie on a two-dimensional mobility table. In the two-dimensional mobility table, the nonlinearities in any one of
the dimensions will appear “interactive” with respect to the other two dimensions. For example, the class destination
nonlinearities will appear at different mobility levels for different class origin groups.
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Figure F.1: Graphical Models of Origin, Destination, and Mobility Effects
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Notes: Panel (a) shows the graphical model for the causal effects of the origin (O∗), destination (D∗), and mobility (M∗)
underlying, unobserved factors on an outcome (Y ) alongwith a background variable (X ). Filled circles denote observed
variables while hollow circles denote unobserved variables. Idiosyncratic causes that affect the three underlying factors
(UO∗ , UD∗ , UM∗ ) and the outcome (UY ) are omitted for simplicity of presentation. Panel (b) shows the graphical
model with the observed origin (O), destination (D), and mobility (M ) dimensions used as proxies for the for the
underlying, unobserved causal factors. The double lines indicate the linear dependency among the dimensions, such
thatD := O +M , where :=means “is defined as.” Note that the observed variablesO,D, andM are not affected by
idiosyncratic causes.

Parallel-World Counterfactuals

In the context of mobility effects models, counterfactuals can be defined in terms of intervening to
fix (or set) some values of underlying origin, destination, and mobility factors for an individual. Let
Y o∗d∗m∗ be the outcome if we were to somehow intervene to fix the underlying factors of origin,
destination, and mobility for a given individual. We could thus define, for a particular individual, a
counterfactual outcome as Y o∗=low,d∗=high,m∗=down, where low, high, and down refer to bundles of
causal processes. Essentially, this counterfactual requires intervening to fix a set of causal factors for
low class origin, high class destination, and downward mobility, thereby invoking, within the same
individual, parallel worlds. In this case, the individual is fixed to values of the underlying mecha-
nisms that imply upward mobility, for example, while also being fixed to mechanisms that imply
downward mobility. This is not intrinsically problematic, as various estimated causal effects, such
as natural direct and indirect effects, invoke parallel-world counterfactuals. It does mean, however,
that there is no obvious way for a real-world intervention, such as a randomized experiment, to
generate the expected value of this counterfactual for a given population.72

The Consistency Assumption

Suppose we believe that we have identified a causal effect for mobility. To endow this estimate
with a formal counterfactual interpretation, one must invoke the assumption of consistency (Her-
nan 2016). Formally, given an individual respondent r is exposed toMr = m, the counterfactual
outcome Y m

r is said to be “consistent” with the observed outcome Yr if Y m
r = Yr . This assumption

is violated if there are multiple ways to obtain a given level of exposure, thereby generating differ-
ent counterfactuals. This assumption is particularly likely to be violated for composite variables
that reflect multiple underlying features of the data. For example, the causal effect of cholesterol
on health is “inconsistent” because the effect on health is very different depending on whether or

72Furthermore, as with the literature on natural direct and indirect effects, which has drifted toward so-called “in-
terventional analogues” of mediator effects (Vansteeldant and Daniel 2017), it is unclear whether such parallel-world
counterfactuals are actually of interest to applied researchers.
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Figure F.2: Social Mobility as a Confounder
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Notes: Panel (a) shows the underlying graphical model, which now includes a path between O∗ and M∗ as well as
an additional unobserved causal variable U . It is assumed that the underlying causal variables O∗, D∗, andM∗ are
all observed. The causal effect of O∗ is confounded due toM∗. However, standard adjustment techniques introduce
potential bias becauseM∗ is also amediator on the causal path fromO∗ toY . An additional complication is introduced
by an unobserved confounder U between class mobility and the outcome. With U , the mobility variableM∗ becomes
a collider variable even after adjusting forX . Thus, adjusting forM∗ using standard techniques will open a backdoor
path betweenO∗ and Y , thereby biasing the estimated causal effect of class origin on the outcome. Panel (b) shows the
graphical model if there are multiple destination destination and mobility causal factors measured at subsequent time
periods (D∗

1 ,M∗
1 ,D∗

2 ,M∗
2 ), with multiple outcomes (Y1, Y2) and multiple unobserved confounders (UM∗

1
, UM∗

2
). The

same issues arise in this more complicated setting.

not one intervenes to raise cholesterol by increasing HDL (“good” cholesterol) versus LDL (“bad”
cholesterol). The practical advice is to use variables that correspond to narrowly defined exposures,
with correspondingly well-defined counterfactuals. This can be viewed as a subjective decision that
depends on one’s expertise and tolerance for ambiguity. For example, Rehkopf et al. (2016) outline
ways in which neighborhoods, income, and education can each be understood to violate the con-
sistency assumption, despite widespread agreement in sociology and related fields that these are all
causal variables. For instance, they consider education as an example that violates the consistency
assumption, inasmuch it has an effect on the outcome via, for example, “improvements in knowl-
edge and cognitive skills, credentials that are valued on the labor market, status improvements, and
changes to the individual’s social network.” (2016: 66). Unfortunately, measures of social class and
class mobility are clearly a composite variable that reflects a variety of underlyingmechanisms (e.g.,
Wright 2005) and thus leads to ill-defined, ambiguous counterfactuals. This suggests that the ba-
sic mobility effects approach, in which origin, destination, and mobility are proxies for omnibus
underlying causal factors, should be replaced by a more targeted approach that focuses on specific,
well-defined causal mechanisms.

Unobserved Confounding

To identify the causal effect of socialmobility, wemust assume thatmobility is not confoundedwith
the outcome. This implies conditioning on relevant background variables and avoiding condition-
ing on post-exposure confounders, whichwould block some of the effects ofmobility. However, the
assumption of no unobserved confounding is particularly thorny with respect to mobility effects
models. This is closely related to the consistency assumption. Because these are omnibus factors
representing multiple causal mechanisms and background variables, it is difficult to imagine which

Online Supplement - page S-31



unobserved variables would confound the effect of mobility on a given outcome. Again, more nar-
rowly defined exposures are helpful in figuring out what variables are potential confounders, but
this will lead the researcher away from the analysis of mobility effects as they have been conven-
tionally understood in the literature.

Mobility As A Confounder

Finally, a fourth problemwithmodels of mobility effects concerns the fact that social mobility itself
is a confounding variable. A careful inspection of Figure F.1 reveals that we have assumed that
the underlying origin variable has no causal effect on the underlying mobility variables. This is
unrealistic in practice. Presumably, the bundle of causal factors for class origin affects not only
those for class destination, but also mobility. This scenario is illustrated in Figure F.2(a), which
now includes a path between O∗ andM∗ as well as an additional unobserved causal variable U .
To reiterate, following the assumptions of our present discussion, it is assumed that the underlying
causal variablesO∗,D∗, andM∗ are all observed.

Suppose we want to identify the causal effect ofD∗, which is now confounded byM∗. Assum-
ing we have observed these underlying variables, standard adjustment techniques would introduce
potential bias becauseM∗ is also a mediator on the causal path fromO∗ to Y . An additional com-
plication is introduced by an unobserved confounder U between class mobility and the outcome.
With U , the mobility variableM∗ becomes a collider variable. Thus, adjusting forM∗ using stan-
dard techniques would open a backdoor path between O∗ and Y , thereby biasing the estimated
causal effect of class origin on the outcome. The same issues extend to more complicated settings,
such as that shown in Figure F.2(b), with multiple class destination and mobility variables, as well
as multiple confounders.73

73Assuming one has observed factors for origin, destination, and mobility, then various methods for time-varying
confounding could be used to estimate the effects, such as structural nested models (Vansteeldant and Joffe 2014),
marginal structural models (Robins et al. 2000), or residualized regression models (Wodtke and Xiang 2020). How-
ever, the problems of consistency, no unobserved confounding, and parallel counterfactuals would remain.
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Online Appendix G: Additional Structural and Dynamic Inequalities

In themanuscript, we focus on three parametric expressions that can be derived from the Structural
and Dynamic Inequality (SDI) Model, namely the Social Structure Slope and the Social Mobility Slope,
Social Structure Curves and Social Mobility Curves, and Comparative Mobility Curves. Below, we first
show the full list of expressions that can be derived from the SDI model and then illustrate the
analytic use of one additional expression in the form of theMarginal Class Destination Curve.

Full list of expressions derived from the SDI model

Table G.1: Summarizing Structural and Dynamic Inequalities on a Mobility Table

General
Terminology

Specific
Summary Mathematical Expression

Structural Inequality



Social Structure Slope Γ1(i− i∗) for all i

Social Structure Curve Γ1(i− i∗) + α̃i for all i

Social Structure Surface Γ1(i− i∗) + α̃i + β̃j for combinations of i, j

Local Social Structure Curves Γ1(i− i∗) + α̃i + β̃i+k−I for all i in each mobility group k

Dynamic Inequality



Social Mobility Slope Γ2(k − k∗) for all k

Social Mobility Curve Γ2(k − k∗) + γ̃k for all k

Social Mobility Surface Γ2(k − k∗) + γ̃k + β̃j for combinations of k, j

Local Social Mobility Curves Γ2(k − k∗) + γ̃k + β̃k+i−I for all k in each origin group i

Structural & Dynamic
Inequalities



Adjusted Marginal
Destination Slope

(
Γ1ω(i,j) + Γ2ω(k,j)

)
(j − j∗) for all j

Adjusted Marginal
Destination Curve

(
Γ1ω(i,j) + Γ2ω(k,j)

)
(j − j∗) + β̃j for all j

Overall Comparative
Mobility Curve ϕi + Γ2(k − k∗) + γ̃k for all k in each origin group i

Adjusted Comparative
Mobility Curve ϕi + Γ2(k − k∗) + γ̃k + β̃i+k−I for all k in each origin group i

Unadjusted Comparative
Mobility Curve ϕi + Γ2(k − k∗) + γ̃k + β̃i+k−I + ηi[i+k−I]k for all k in each origin group i

Notes: Γ1 = α+β andΓ2 = γ+β. The quantity ϕi is equal toΓ1(i− i∗)+ α̃i, which is a single value for a given origin
group i.

Adjusted Marginal Destination Curves

To illustrate the analytic use of just one additional expression from Table G.1, we now discuss the
Adjusted Marginal Destination Curve. So far we have focused on examining the data through the
lens of the SDI model, which is a general model of the form Y = f(O,M) + ϵ. However, as we
outlined in the previous section, it may be useful in some circumstances to also examine the data
using a marginal class destination model, which has the general form of Y = f(D) + ϵ, where
again, without a loss of generality, ϵ is a normally distributed error term with a mean of zero. A
particularly useful summary is what we call the adjusted marginal destination curve, which is equal to:

βM (j − j∗) + β̃j =
(
Γ1ω(i,j) + Γ2ω(k,j)

)
(j − j∗) + β̃j for j = 1, . . . , J, (G.1)
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where ω(i,j) is the relationship between the origin linear component and the destination linear
component conditional on the origin, destination, and mobility nonlinearities while ω(k,j) is the
relationship between the mobility linear component and the destination linear component again
conditional on the origin, destination, and mobility nonlinearities. This curve is equivalent to a
simple class destination model (see Equation C.6 in Online Appendix C), but we have adjusted for
the origin, destination, and mobility nonlinearities. Failing to adjust for the origin and mobility
nonlinearities will introduce bias into the estimated overall class destination gap. However, a more
practical reason for adjusting for the origin and mobility nonlinearities is that we can decompose
the overall (linear) class destination gap into structural and dynamic components. This can thus an-
swer crucial questions regarding the extent to which cross-destination differences are attributable
to differences in the social structure versus social mobility.

The Γ̂1ω̂(i,j) term in EquationG.1 gives the contribution of social structure to the adjusted class
destination slope, while Γ̂2ω̂(k,j) gives the contribution of social mobility. In general, social struc-
turewill contributemore to the class destination slope the greater the degree of correlation between
class origin and destination, as well as the greater the relationship between the ST slope and the out-
come. Similarly, in general, social mobility will contribute more to the class destination slope the
greater the degree of correlation between class mobility and destination, as well as the stronger the
relationship between the SM slope and the outcome. In a world with no differences in social mo-
bility, the class destination gap will be driven entirely by the social structure; conversely, in a world
without any structural inequality, the destination gap will be entirely a function of social mobility.
In other words, the SDI model can be used to decompose any marginal class destination gap, i.e.,
the kind of social class gaps that are arguably the most common estimand in social stratification
research, into distinct structural- versus mobility-based components.

Figure G.1: Marginal Class Destination Curve
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Notes: Panel shows the adjusted marginal class destination curve,
which is estimated conditional on the origin andmobility nonlin-
earities. The curve is a function of βM (j − j∗) + β̃j for all class
destination groups j. Data are based on Sobel (1981).

Figure G.1 shows the adjusted marginal class destination curve for the fertility data. As can
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be seen, there is a general observed decline in fertility as one compares lower versus higher class
destinations. The underlying adjusted marginal destination slope is β̂M = −0.290, indicating a
negative relationship between fertility and class destination. Using Equation G.1, we can decom-
pose this overall slope into structural and social mobility components:

β̂M =
(
Γ̂1ω̂(i,j) + Γ̂2ω̂(k,j)

)
= (−0.317)(0.740) + (−0.213)(0.260) = (−0.235) + (−0.055), (G.2)

the sum of which equals adjusted marginal destination slope, or −0.290. In this case, most of the
class destination gap is a function of structural differences, reflecting both the relatively large ST
slope as well as the strong relationship between the class destination linear component and class
destination origin linear component.
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