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Online Appendix A: Prior Contributions Using the DRM

As shown in Figure 1 of the main text, the DRM has been widely and increasingly used to estimate
the effects of social mobility on a wide range of outcomes. In this appendix, we provide a schematic
summary of the topics addressed in these contributions and the general direction of effects that have
been estimated. The tables below highlight the findings from the key studies upon which Figure 1
rests.

Table A.1: Social and Cultural Attitudes

Author Year Outcome Measure(s) Null + — NC

Kulis 1987 Attitudes towards family X X

Marshal and Firth 1999 Life satisfaction X

Tolsma et al. 2009 Ethnic attitudes X X

Coulangeon 2013 Musical taste X

Daenekindt and Roose 2013 Aesthetic dispositions X X

Daenekindt and Roose 2014 Musical taste X

Coulangeon 2015 Musical taste X X

Chan and Turner 2017 Musical taste X

Sieben 2017 Child-rearing values X

Dom?fmk.l and 2018 Culinary taste X

Karpinski

Schaeffer 2019 D1scr1rr%1nat10n X
perception

Rotengruber and 2021 Musical taste X

Tyszka

Creighton et al. 2022 Attltl,ldes .towards X X
1mmigration

Mijs et al. 2022 Meritocratic beliefs X

Notes: Positive effects are given by +, negative effects by —, and zero or near-zero effects by “Null”
Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Table A.2: Health

Author Year Outcome Measure(s) Null + — NC
Monden and de Graaf 2013 Self-assessed health X
Missinne et al. 2015 Health care use X

Yang 2016 Smoking and drinking X

van der Waal et al. 2017 Obesity X

ﬁggﬁjﬁy and 2018 Fertility

Dennison 2018 Drug use X
Tarrence 2018 Self-rated health X X
Priag and Richards 2019 Stress biomarkers X

Steiber 2019 f;li’i?:zgjnhealth

Gugushvili et al. 2020 Smoking and drinking

Yang 2020 Smoking X X
Xzirzlzf:_;zig 2021 Self-rated health X

Zelinska et al. 2021 Self-rated health X

Bulczak and Gugushvili 2022 Cardiometabolic risk X
Bulczak et al. 2022 Various health measures X

Graf et al. 2022 Biological aging X

Iveson et al. 2022 Self-rated health X

Kempel et al. 2022 Cardiometabolic risk X

Luo 2022 Fertility X
Tarrence 2022 Self-rated health X

Notes: Positive effects are given by +, negative effects by —, and zero or near-zero effects by “Null”
Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Table A.3: Political Outcomes

Author Year Outcome Measure(s) Null + — NC
De Graaf et al. 1990 Left/Right preferences X
Weakliem 1992 Left/Right voting X
Clifford and Heath 1993 Left/Right voting X
g:lzzvbeerta and de 1993 Left/Right voting X
Breen and Whelan 1994 Left/Right preferences X X
Graaf et al. 1995 Left/Right preferences X
Nieuwbeerta 1995 Left/Right voting X
Nieuwbeerta et al. 2000 Left/Right voting X
Breen 2001 Left/Right preferences X X
Paterson 2008 Left/Right attitudes X
Daenekindt et al. 2018 Trust X X
Fan and Yan 2019 Political Participation X
e Cottend g edsmbu
Kraus and Daenekindt 2022 Attitl.ldes towgrds
multiculturalism
McNeil 2022 Left/Right attitudes X X
McNeil and Haberstroh 2023 Opinion on Brexit X
Wilson et al. 2022 Redistribution X
preferences

Notes: Positive effects are given by +, negative effects by —, and zero or near-zero effects by “Null”
Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Table A.4: Psychological Well-being

Author Year Outcome Measure(s) Null + — NC

Houle and Martin 2011 Psychological distress X

Zang and de Graaf 2016 Happiness X

Daenekindt 2017 Dissociation X X

Schuck and Steiber 2018 Subjective well-being X

Gugushvili et al. 2019 Depression X

Dhoore et al. 2019 Life satisfaction X

Schuck 2019 Subjective well-being X X

Zhao and Li 2019 Subjective well-being X
Subjective social status,

Engzell and Ichou 2020 perceived financial situ- X
ation

Gugushvili et al. 2021 Allostatic load X

Kaiser and Trinh 2021 Life satisfaction X

Zelinska et al. 2021 Subjective well-being X

Kwon 2022 Subjective well-being X

Notes: Positive effects are given by +, negative effects by —, and zero or near-zero effects by “Null”
Those effects that are indeterminate are given as “NC” (Not Classifiable).
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Online Appendix B:
Mobility Models & The Identification Challenge: A General Introduction

In this section, we first present a general mobility effects model that incorporates primary param-
eters capturing the independent effects of origin, destination, and mobility, along with additional
cell-specific parameters that represent heterogeneity or interactions among these dimensions. We
then introduce a reparameterized version of the conventional model that explicitly distinguishes
linear from nonlinear effects. This reparameterization facilitates a deeper understanding of the in-
herent limitations in identifying mobility effects while also laying the groundwork for the various
approaches to analyzing mobility effects we discuss in subsequent sections.

In the conventional mobility effects literature, researchers pursue the identification of unique
origin, destination, and mobility effects despite the mathematical dependency among these dimen-
sions. While not explicitly articulated, this pursuit implies a conceptual distinction between ob-
served positions on a mobility table, namely, origin, destination, and mobility, and the underlying
causal mechanisms they represent. That is, although destination (D) is mathematically defined as
the sum of origin (O) and mobility (M), the bundles of causal mechanisms they proxy for, which
we denote as O*, D*, and M*, are theoretically distinct and capable of varying independently. Ori-
gin effects (O*) might represent parental economic resources, cultural socialization, or educational
guidance; destination effects (D) could capture workplace authority relations, professional net-
work benefits, or class-based consumption opportunities; and mobility effects (M *) might reflect
distinct processes such as status anxiety, reference group changes, or psychological adaptation to
class transitions. This distinction supplies the rationale for attempting to identify unique effects
of origin, destination, and mobility, notwithstanding their deterministic mathematical relation-
ship. More formally, let O*, D*, and M* denote underlying bundles of causal mechanisms that
are allowed to vary freely from each other such that D* # O* 4+ M*. Mobility effects analysis,
as commonly used in the literature, can generally be understood as any analysis using functions of
the form Y = f(O*, D*, M*) + ¢, where € is a normally distributed error term with a mean of
zero. However, because O*, D*, and M* are typically unobserved, the observed dimensions of the
mobility table, O, D, and M, which have the natural relationship D = O + M, are substituted
for the underlying causal variables O*, D*, and M* (cf. Bijlsma et al. 2017: 722-724; Clogg 1982;
Heckman and Robb 1985). As we show in later sections, it is only under very strong assumptions
that one can extract unique “effects” using a conventional analysis of mobility effects.

More specifically, suppose we have data collected on individuals indexed fromr = 1,..., R,
where I? is the total number of respondents. Additionally, suppose we have data collected on the
underlying causal factors O*, D*, M*, which are coded as categorical variables with levels indexed
byl=1,...,L,p=1,...,P,andn = 1,..., N, respectively.! The mobility effects model can
thus be specified as follows:

Y = f(O*, D", M) + e = p" +af + By + 1+ Npn + Eripns (B.1)

where £1* is the intercept (or overall mean); o, 6;, 7, denote the [th, pth, nth levels of the un-
derlying causal factors for origin, destination, and mobility, respectively; 'r];;m is an additional (or-
thogonal) term denoting interactions among the underlying factors; and £, is an individual-level,
normally distributed error term with a mean of zero. If one somehow had access to these underlying
factors, then, under standard assumptions of consistency and no interference between units, posi-

tivity and overlap, and conditional ignorability, we could use Equation B.1 to estimate [E[Y "4 ™|

)

For simplicity, and without loss of generality, we will assume that the origin and destination categories are of equal
width.
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the expected value of the counterfactual outcome if we were to set O* to some value 0*, D* to some
value d*, and M™ to some value m*, each of which, as noted above, are allowed to freely vary. The
estimand here is the difference in expected outcomes for two hypothetical individuals who share
the same origin 0* and the same destination d* but differ in their mobility factor m*. Formally, one
can write this “mobility effect” as:

E[Y(O*’d*’m*)] . E[Y(O*’d*’m,*)]

Y

where 0* and d* are held fixed at the same levels in both expectations, and m* # m/* represents two
different possible mobility “treatments.” Under the usual assumptions (consistency, no interference,
positivity, ignorability, as well as the assumption that the causal directions are appropriately spec-
ified), this difference captures how much the outcome Y would change if origin and destination
were fixed to the same values but mobility status were fixed to different values. This is the estimand
that the rapidly growing literature on social mobility effects, which overwhelmingly uses the DRM
(see Online Appendix A), seeks to identify.

In practice, one typically does not have access to the underlying bundles of causal mechanisms
in Equation B.1. Instead of treating them as dimensions of observed positionality on a mobility
table, O, D, M, as noted above, are used as proxies for O*, D*, and M*.> Specifically, suppose we
have a set of categorical variables for i = 1, ... [ origin groups, j = 1, ..., J destination groups,
and £ =1, ..., K mobility groups, where k = j — i+ [ and K = I + J — 1. The mobility effects
model using origin, destination, and mobility as proxies can accordingly be specified using what we
call the Classical Origin-Destination-Mobility (C-ODM) model:

Y:f(O*>D*7M*)+6_>f(07D7M)+€:N+051+6j+’)/k+771]k+€mgk’a (BZ)

where p is the intercept (or overall mean); o, 3;, 7 denote the ith, jth, kth observed levels of
origin, destination, and mobility, respectively; 7;;, is an additional (orthogonal) term denoting in-
teractions; and &, is an individual-level, normally-distributed error term with a mean of zero. To
reiterate, Equation B.2 is based on the implicit assumption that O, D, and M (and their respective
indices) can be treated as surrogates for O*, D*, and M* (and their respective indices). To simplify
the exposition, we will accordingly refer to v, 3;, and ~y;, as the “true” origin, destination, and mo-
bility effects, but the reader should keep in mind that this is shorthand for referring to o, ﬁ; Yo
(for a similar point, see Fosse and Winship 2019a).

Unfortunately, the basic mobility effects model outlined in Equation B.2 suffers from a fun-
damental identification problem that goes beyond the identification problem common to all linear
models using categorical variables as inputs.®> This problem was vividly illustrated by the sociologist

2An alternative strategy is to shift away from modeling general “effects” and instead focus on examining the effects
of specific variables that are thought to capture particular origin-, destination-, or mobility-related processes. For
example, rather than attempting to model an omnibus “mobility effect” on, say, voting behavior or political preferences
(e.g., Clifford and Heath 1993; De Graaf et al. 1995), one might examine how specific mobility-related events, such
as a spell of unemployment or changes in job tasks, affect the likelihood of voting for a particular political party (e.g.,
Turner and Ryan 2023; Wiertz and Rodon 2021). However, because this approach focuses on understanding the effects
of particular mechanisms rather than global origin, destination, and mobility effects, it may be seen as a shift away from
mobility effects analysis as it has been traditionally understood in the literature.

3The common identification problem is that, with an intercept in the model, there is one more level than can be
estimated for the origin, destination, and mobility effect. Although common, interpretation errors can ensue: For
example, in a related literature on APC models, it has been shown that for some estimators seemingly trivial changes
in coding schemes, such as the level used as the reference category, can generate dramatically different results (Fosse
and Winship 2018). In the discussion that follows, we will assume that sum-to-zero constraints are applied, such that

Online Supplement - page S-6



Hubert Blalock (1966: 53), who posed the following thought experiment: “Suppose an unscrupu-
lous demon were to perform certain legitimate mathematical manipulations, presenting to us some
new equations with different numerical values for the slopes. Could we ever discover the hoax?”
Unfortunately, with respect to the analysis of mobility effects, the answer is in the negative: the
linear effects are not identified in conventional mobility models, and estimates are compatible with
an infinite range of possible values (Blalock 1966).* Intuitively, this is simply because there is not
enough information to identify all three linear effects from the data alone (for a related discussion
and proofs, see Fosse and Winship 2018).

It is worth emphasizing that the identification challenge in mobility research shares important
similarities with the classic age-period-cohort (APC) problem, in which Age 4+ Cohort = Period
creates a linear dependency that cannot be resolved with data alone. However, APC analyses typ-
ically rely on a Lexis table indexing temporally-based dimensions, namely, age, historical period,
and birth cohort, which serve as proxies for life-cycle, generational, and period-based causal pro-
cesses (e.g., see Fosse and Winship 2019b). By contrast, mobility research is grounded in struc-
tural dimensions, namely, class origin, class destination, and social mobility, that proxy class- and
movement-based causal processes. These different substantive applications have informed the his-
tory of model development in both domains. Despite these distinct substantive interpretations,
however, both APC and origin-destination-mobility models confront the same underidentification
challenge: neither set of “effects” can be uniquely disentangled without additional, often strong,
assumptions.

An alternative formulation of the C-ODM model (see Equation B.2) helps clarify the nature of
the identification problem. By orthogonalizing the linear from the nonlinear terms, we can specify
what we call the Linearized Origin-Destination-Mobility (L-ODM) model:

prighe = i+ ali =) + B(G = 5%) + (k= k) + @i + B + T + migk + Erigi (B.3)

where the asterisks denote midpoint or referent indices i* = (I + 1)/2, j* = (J 4+ 1)/2, and
k* = (K +1)/2; o, 3, and -y denote the linear effects of origin, destination, and mobility, respec-
tively; and v, B, and 7y represent the origin, destination, and mobility nonlinear effects, respectively;
7ijk is, as before, an additional (orthogonal) term denoting interactions; and &,;;) is a normally-
distributed individual-level error term with a mean of zero. To identify the levels of the parameters
given the inclusion of the intercept, sum-to-zero constraints are applied to the linear and nonlinear
parameters.

The C-ODM and L-ODM models are equivalent representations of class data grouped by origin,
destination, and mobility in the sense that a model fitted using either specification will result in the
same predicted values of the outcome.” However, the L-ODM model has a significant advantage
over the C-ODM model. Due to the linear dependence among origin, destination, and mobility, as
well as the fact that origin, destination, and mobility parameters combine slopes with deviations,
even after applying sum-to-zero constraints, in general no parameters are identified in the C-ODM
model other than the overall mean (cf. Fosse and Winship 2018).° By contrast, after applying the

Zle ap = ijl B = Ele vk = 0, with the last category of the origin, destination, and mobility variables
dropped.

4This does not mean, however, that, based on substantive or theoretical knowledge, one would necessarily believe
that all values are equally valid (e.g., see Fosse and Winship 2019b).

SMore technically and precisely, the two models are equivalent in that they span the same linear subspace of the
data.

®However, if I, J, and/or K are odd, then under conventional “normalization” assumptions the corresponding
mean parameters (r41)/2, B(j+1)/2, and/or (g 41,2 will be identified (see Smith 2021 for a similar point).
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sum-to-zero constraints, only the three linear effects in the L-ODM model remain unidentified.”
This greatly simplifies the nature of the identification problem and, as we show later, allows one
to use graphical tools for visualizing and partially identifying the parameters of a mobility effects
model. Moreover, as we demonstrate in the next section, the L-ODM can be used to clarify the
assumptions underlying the current wave of studies on mobility effects.

"We elaborate on this property later when we discuss the bounding approach to mobility effects models.
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Online Appendix C: Further Simulations of the Bias in the DRM

Here we present results from simulations with various values of the nonlinear effects for origin and
destination. Note that in these simulations we assume that the proportionality constraint holds for
the nonlinear origin and destination effects, but not necessarily for their respective linear effects.
In all simulations we fix the true linear effects at the same magnitude and sign, namely, « = § =
~v = 0.250. We present the nonlinear effects in terms of quadratic (second-order) components,
but similar results could be obtained using alternative representations of the nonlinearities (e.g.,
deviations from the linear effects). To clarify the sensitivity of the DRM to the nonlinear effects, in
all simulations we keep the true origin, destination, and mobility linear effects fixed at 0.250. The
top half of Table C.1 displays the results across different values of the quadratic origin parameter,
while the bottom shows the results across different values of the quadratic destination parameter.
As with the previous tables of simulations, the shaded rows denote those specific simulations in
which the data generating parameters happen to be recovered by the DRM.

Table C.1: Sensitivity of Estimated Mobility Linear Effect
to Values of True Origin and Destination Nonlinear Effects

True DGP DRM Estimates Bias ( — )
o> By o B v B) @) = (a)(wa) = F-7
Varying o®: 0.000 0.050 0.250 0.000 0.500 0.000 (0.250)(3528) — (0.250)(3:3%2) = —0.250
0.050 0.050 0.250 0.250 0.250 0.250 (0.250)(3923) — (0.250)(3:323) =  0.000
0.100 0.050 0.250 0.333 0.167 0.333 (0.250)(3923) — (0.250)(3923) = 0.083
0.250 0.050 0.250 0.417 0.083 0.417 (0.250)(2:250) — (0.250)(3:028) = 0.167
0.500 0.050 0.250 0.455 0.046 0.455 (0.250)(3:22%) — (0.250)(3:22) = 0.205
1.000 0.050 0.250 0.476 0.024 0.476 (0.250)(+3%) — (0.250)(%:350) = 0.226
Varying 3% 0.050 0.000 0.250 0.500 0.000 0.500 (0.250)(2:352) — (0.250)(3023) = 0.250
0.050 0.050 0.250 0.250 0.250 0.250 (0.250)(3-93%) — (0.250)(3:93%) = 0.000
0.050 0.100 0.250 0.167 0.333 0.167 (0.250)(3923) — (0.250)(g4%3) = —0.083
0.050 0.250 0.250 0.083 0.417 0.083 (0.250)(§:323) — (0.250)(§3%3) = —0.167
0.050 0.500 0.250 0.046 0.455 0.046 (0.250)(3:223) — (0.250)(32%) = —0.205
0.050 1.000 0.250 0.024 0.476 0.024 (0.250)(2:83%) — (0.250)(:3%) = —0.226

Notes: Number of origin and destination groupsis setat I = 5and J = 5, respectively, for all simulations. Sample
size for each simulation is R = 5, 958. For all simulations the true linear effects are fixed at « = = v = 0.250
and the true nonlinear effects other than o and 3 are fixed at zero. For simplicity, and without loss of generality,
we assume no random error. Shaded rows denote simulations in which the DRM recovers the true mobility linear
effect (¥ = =y). The bias arises due to the fact that the underlying origin and destination linear effects do not obey
the proportionality constraints of the estimated weights, which are a function of the underlying nonlinear effects.
For example, in the top row the estimated weights for origin and destination are w, = 0.000 and @y = 1.000,
respectively. Yet the actual weights needed to recover the true origin and destination effects are w, = 0.500 and
wq = 0.500, respectively.
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Online Appendix D: Additional Complications for Point-Identified or Partially-
Identified Mobility Effects

So far little has been stated about the meaning of a mobility “effect.” In this appendix we outline
the conceptualization of a mobility effect implied by the conventional mobility effects literature,
outlining a number of challenges.

Graphical Causal Models

Figure D.1 presents the basic setup of a mobility effects model in terms of directed acyclic graphs
(DAGs). As is common in the sociological literature, we treat these DAGs as the graphical em-
bodiment of Pearl’s (2009) nonparametric structural equation models (NPSEMs), using them to
explicitly encode the underlying causal structure among the relevant variables. Panel (a) shows the
graphical model for the causal effects of the origin (O*), destination (D*), and mobility (M*) un-
derlying factors on an outcome (Y") along with a background variable (X).® Filled circles denote
observed variables while hollow circles denote unobserved variables. Note that, because the causal
factors are unobserved, they are denoted with hollow circles. As well, for simplicity of presenta-
tion we have omitted idiosyncratic causes that affect the three underlying, unobserved factors (Up+,
Up+, Ups+) and the outcome (Uy ).

In a conventional mobility effects analysis, the observed variables O, D, and M, which have
the natural relationship D := O + M (where := means “is defined as”), are substituted for the
underlying causal variables O*, D*, and M*.? This scenario is shown in panel (b) of Figure D.1. The
double lines indicate the linear dependency among the dimensions. Note that these variables, unlike
O*, D*, and M*, are observed, as indicated by the solid points. As well, the observed variables O,
D, and M are not affected by idiosyncratic causes, as they are deterministically related dimensions
of the mobility table.

Aswe have discussed in previous sections, the scenario in Figure D.1(b) is problematic because of
the linear dependence among origin, destination, and mobility. Even assuming that the underlying,
unobserved factors are additive, with minimal interactions,'” there is still not enough information
to uniquely estimate all three causal effects. In operational terms, this means that we can only con-
dition on two of the three variables (or, more precisely, their linear components). This is clearly a
problem, as the graphical model in Figure D.1 shows that estimating just two of the three causal
effects will lead to biased estimates.

For the sake of the present discussion, however, let us assume that we have somehow obtained
the underlying causal factors O*, D*, and M*. Suppose further that we are somehow able to obtain
estimates that correspond to causal graph in Figure D.1(a). Even in such an idealized scenario, seri-
ous problems remain in interpreting the estimates of these effects. We outline four such problems
below. It is important to understand that these issues arise in all models of mobility effects, and add
a further layer of complexity to identification and estimation.

8 As outlined previously, in conventional models of mobility effects, origin, destination, and mobility are implicitly
treated as surrogates for unobserved factors that actually generate an outcome of interest. Again, let O*, D*, and M*
denote underlying causal factors that are allowed to freely vary from each other such that D* need not equal O* + M *.

?More specifically, for a mobility table with ¢ = 1,..., I origin groups, j = 1,...,J destination groups, and
k=1,..., K mobility groups, itis thecasethat j = ¢+ k —JTand K =T + J — 1.

101t is important to note that saying that O*, D*, and M* are additive is not the same as saying that O, D, and M
are additive. The reason is that the unobserved factors lie on a three-dimensional tensor, while the observed dimen-
sions lie on a two-dimensional mobility table. In the two-dimensional mobility table, the nonlinearities in any one of
the dimensions will appear “interactive” with respect to the other two dimensions. For example, the class destination
nonlinearities will appear at different mobility levels for different class origin groups.
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Figure D.1: Graphical Models of Origin, Destination, and Mobility Effects
(@) (b)

>~~~ T TN~ T

Notes: Panel (a) shows the graphical model for the causal effects of the origin (O*), destination (D*), and mobility (M *)
underlying, unobserved factors on an outcome (Y") along with a background variable (X). Filled circles denote observed
variables while hollow circles denote unobserved variables. Idiosyncratic causes that affect the three underlying factors
(Uo+, Up+, Ups+) and the outcome (Uy) are omitted for simplicity of presentation. Panel (b) shows the graphical
model with the observed origin (O), destination (D), and mobility (M) dimensions used as proxies for the underlying,
unobserved causal factors. Double lines indicate the linear dependency among the dimensions. Here O, D, and M are
deterministic indices, so we omit idiosyncratic causes for them in this schematic.

Parallel-World Counterfactuals

In the context of mobility effects models, counterfactuals can be defined in terms of intervening
to fix (or set) some values of underlying origin, destination, and mobility factors for an individual.
We use the counterfactual notation Y% ™" where superscripts index hypothetical interventions
on the causal factors O* (origin), D* (destination), and M* (mobility). We could thus define, for a
particular individual, a counterfactual outcome as y o' =low,d*=high;m*=down (vhare ow, high, and
down refer to bundles of causal processes. In this case, the individual is fixed to values of the un-
derlying mechanisms that imply upward mobility, while also being fixed to mechanisms that imply
downward mobility. This is not intrinsically problematic, as various estimated causal effects, such
as natural direct and indirect effects, invoke parallel-world counterfactuals. It does mean, however,
that there is no obvious way for a real-world intervention, such as a randomized experiment, to
generate the expected value of this counterfactual for a given population.'!

The Consistency Assumption

Suppose we believe that we have identified a causal effect for mobility. To endow this estimate
with a formal counterfactual interpretation, one must invoke the assumption of consistency (Her-
nan 2016). Formally, given an individual respondent r is exposed to M, = m, the counterfactual
outcome Y™ is said to be “consistent” with the observed outcome Y, if Y™ = Y/.. This assumption
is violated if there are multiple ways to obtain a given level of exposure, thereby generating differ-
ent counterfactuals. This assumption is particularly likely to be violated for composite variables
that reflect multiple underlying features of the data. For example, the causal effect of cholesterol
on health is “inconsistent” because the effect on health is very different depending on whether or
not one intervenes to raise cholesterol by increasing HDL (“good” cholesterol) versus LDL (“bad”
cholesterol). The practical advice is to use variables that correspond to narrowly defined exposures,

HFurthermore, as with the literature on natural direct and indirect effects, which has drifted toward so-called “in-
terventional analogues” of mediator effects (Vansteelandt and Daniel 2017), it is unclear whether such parallel-world
counterfactuals are actually of interest to applied researchers.
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Figure D.2: Social Mobility as a Confounder

Notes: Panel (a) shows the underlying graphical model, which now includes a path between O* and M* as well as an
additional unobserved causal variable U. It is assumed that the underlying causal variables O*, D*, and M™* are all
observed. Because M ™ lies on the O* — Y path and, with respect to O* and the unobserved variable U, is a collider,
conditioning on M ™ using conventional techniques biases estimation by (1) blocking part of the O* — Y effect and (2)
opening the backdoor path O* — M* <— U — Y. Panel (b) shows the graphical model if there are multiple destination
and mobility causal factors measured at subsequent time periods (D7, M7, D3, M), with multiple outcomes (Y7, Y2)
and multiple unobserved confounders (U M U My ). Similar issues arise in this more complicated setting.

with correspondingly well-defined counterfactuals.

Note, however, that this is a subjective decision that depends on one’s expertise and tolerance
for ambiguity. For example, Rehkopf et al. (2016) outline ways in which neighborhoods, income,
and education can each be understood to violate the consistency assumption, despite widespread
agreement in sociology and related fields that these are all causal variables. They consider education
as a variable that violates the consistency assumption, inasmuch as it has an effect on the outcome
via, for example, “improvements in knowledge and cognitive skills, credentials that are valued on
the labor market, status improvements, and changes to the individual’s social network (2016: 66).”
By their logic, measures of social class and class mobility are clearly composite variables that re-
flect a variety of underlying mechanisms (e.g., Wright 2005) and thus lead to ill-defined, ambiguous
counterfactuals. This suggests that, because O*, D*, and M* bundle heterogeneous mechanisms,
the basic mobility effects approach should be replaced by a more targeted approach that focuses on
more specific, well-defined causal mechanisms.

Unobserved Confounding

To identify the causal effect of social mobility, we must assume that mobility is not confounded with
the outcome. This implies conditioning on relevant background variables and avoiding condition-
ing on post-exposure confounders, which would block some of the effects of mobility. However, the
assumption of no unobserved confounding is particularly thorny with respect to mobility effects
models. This is closely related to the consistency assumption. Because these are omnibus factors
representing multiple causal mechanisms and background variables, it is difficult to imagine which
unobserved variables would confound the effect of mobility on a given outcome. Again, more nar-
rowly defined exposures are helpful in figuring out what variables are potential confounders, but
this will lead the researcher away from the analysis of mobility effects as they have been conven-
tionally understood in the literature.
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Mobility as a Confounder

Finally, a fourth problem with models of mobility effects concerns the fact that social mobility itself
is a confounding variable. A careful inspection of Figure D.1 reveals that we have assumed that the
underlying origin variable has no causal effect on the underlying mobility variable. This is unreal-
istic in practice. Presumably, the bundle of causal factors for class origin affects not only those for
class destination, but also mobility. This scenario is illustrated in Figure D.2(a), which now includes
a path between O* and M ™ as well as an additional unobserved causal variable U. To reiterate, fol-
lowing the assumptions of our present discussion, it is assumed that the underlying causal variables
O*, D*, and M* are all observed.

Suppose we want to identify the total causal effect of O* on Y. Assuming we have observed the
underlying variables in Figure D.2(a), conventional, naive adjustment techniques would introduce
potential bias. Specifically, because M* lies on the O* — Y path and, with respect to O* and
the unobserved variable U, is a collider, conditioning on M * using conventional techniques biases
estimation by (1) blocking part of the O* — Y effect and (2) opening the backdoor path O* —
M* <— U — Y. The same issues extend to more complicated settings, such as that shown in Figure
D.2(b), with multiple class destination and mobility variables, as well as multiple confounders.!?

12 Assuming one has observed factors for origin, destination, and mobility, then various methods for time-varying
confounding could be used to estimate the effects, such as structural nested models (Vansteelandt and Joffe 2014),
marginal structural models (Robins et al. 2000), or residualized regression models (Wodtke and Xiang 2020).
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Online Appendix E: Summarizing Variability on the Mobility Table

In this appendix we outline models for describing structural and dynamic inequalities in a mobility
table. We first present three different models for summarizing variation in a mobility table based
on re-indexing the L-ODM model by origin-destination, destination-mobility, and origin-mobility,
respectively. We then show, using the logic of omitted variable bias and matrix algebra, how these
models clarify what is actually estimated when fitting all three possible one-factor models and all
three possible two-factor models. These results show that, in general, that for describing patterns
of mobility either a model of the formY = f(D)orY = f(O, M) is to be preferred. Throughout

this appendix we let ¢ = 1, ..., ] index the origin groups, 7 = 1,...,.J the destination groups,
and k = 1,..., K the mobility groups, where k = j — i+ [and K = I + J — 1. As well, we let
r =1,..., R index the respondents (i.e., individuals) in the data set.

1. Three Models for Describing Dynamic and Structural Inequality

As noted in the main text, instead of attempting to identify unique or “pure” effects, one can use
the L-ODM model to identify structural and dynamic processes operating on a mobility table. The
key insight is that we can project the three-dimensional (unidentified) L-ODM model onto a two-
dimensional surface (i.e., a mobility table) by exploiting the fact that mobility, origin, and desti-
nation are linearly related. Because there are three different ways to index a mobility table (i.e.,
origin-mobility, origin-destination, destination-mobility), there are three distinctly different mod-
els for describing patterns on a mobility table.'> We outline each of these models below. Although
each model is indexed by two dimensions, because each model contains parameters for all three
dimensions, we will refer to them as “three-factor” models.

The first model is based on taking the L-ODM model and re-specifying it as an origin-mobility
model. Note that, given an origin-destination mobility table, ; = ¢+ k —[and J = K — I + 1.
Substituting for 7 and J in the L-ODM model and rearranging terms leads to what we call the
Structural and Dynamic Inequality model or the SDI model for short:

firiji = F(O, M) = p+ Ty (i — i)+ To(k — k%) + & + Bsk—1 + A + Mifishorip + Erifishonps ED

where I'y = o + S and I'y = vy + f3, or the social structure (ST) slope and the social mobility (SM)
slope, respectively. As a result of the substitution of the sum of the origin and mobility indices for
the destination indices (thatis, j = ¢+ k — [ and J = K — I 4 1), the outcome is simply a function
of origin, indexed by ¢, with corresponding parameters representing structural inequalities, and
mobility, indexed by k, with corresponding parameters representing dynamic inequalities. This
model is identified (i.e., the design matrix is of full rank) as it does not contain a separate linear term
for destination, which is instead combined with the origin and mobility linear terms, respectively.

The second model is based on expressing the parameters of the L-ODM model in terms of
origin and destination. Note that, given an origin-destination mobility table, k = 7 — ¢ 4+ [ and
K =TI + J — 1. Substituting for k£ and K in the L-ODM model and rearranging terms results in
what we call the Intra-Destination Differences and Structural Inequality model or, for short, the Diff-SI
model:

firije = f(O, D) = p+ (1 = To)(i —i*) + Ta(j — 5°) + & + Bj +Fj—is1 + Nijlj—i+1) + &rijlj—iv1), (E2)
where '} — 'y = (a+ ) — (v + 8) = a—~vyand 'y = v + (. The difference I'y — I'y

in Equation E.2 is a slope of differences within the class destination, while I's is simply the total
realized mobility slope from the SDI model, but indexed by destination (j = 1,...,.J) instead of

3 Note that these models take the general form of Y = f(O, D), Y = f(D,M),and Y = f(O, M).
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by mobility levels (k = 1, ..., K). Similar to the SDI model, the Diff-SI model is identified because
it does not contain a unique linear term for social mobility, which is instead absorbed into the origin
and destination linear terms.

Finally, the third logically possible model entails expressing the parameters of the L-ODM
model in terms of destination and mobility. Note that, given an origin-destination mobility table,
t=7—k+TandI = K — J + 1. Substituting for ¢ and I in the L-ODM model and rearranging
terms results in what we call the Dynamic Inequality and Intra-Destination Differences model or, for
short, the DI-Diff model:

prije = f(D,M) = p+T1(j —5°) + (P2 =T1)(k = k") + & _py(x—s41) + Ej + Yk
+ Nk (K— T+ D]k T Srlj— bt (K —T+1)]5k  (E3)

where 'y — I'y = (v + 8) — (e« + ) = v— aand 'y = o + (. The difference 'y — I'y in
Equation E.3 is an overall slope of differences within destination classes, while I'; is simply the ST
slope from the SDI model, but indexed by class destination (j = 1,...,.J) instead of class origin
(@ =1,...,I). Similar to the previous two models, the DI-Diff model is identified because it does
not include a separate linear term for origin, which is instead absorbed into the destination and
mobility linear terms.

All three models outlined above provide the same estimates of the intercept and the origin, des-
tination, and mobility nonlinearities. However, unlike the SDI model, the slopes indexed by origin
and mobility in Equations E.2 and E.3, respectively, are what can be deemed “synthetic,” conflating
structural with dynamic inequalities. This is because these slopes are estimated while conditioning
on the class destination linear component, and, as such, represent heterogeneous origin-mobility
comparisons within a given class destination. In fact, it is only under very specific circumstances
that Equations E.2 and E.3 will give unbiased estimates of structural and dynamic inequalities, re-
spectively. Specifically, the Diff-SI model will produce the correct estimate of ['; only if ['s happens
to be zero, while the DI-Diff model will give the correct estimate of I'5 only if I'; happens to be zero.
Thatis, I'y —I'y = [y onlyif I'y = 0,and I'y — I'y = I's only if I'y = 0. Thus, for the purposes
directly estimating structural and dynamic inequalities, the SDI model is strongly preferred over
the Diff-SI and DI-Diff models.

In the following sections, we examine the properties of all six logically possible one-factor and
two-factor class models for a given mobility table or, equivalently, data with class origin, destina-
tion, and mobility variables. These models are listed in Table E.1. For each one- or two-factor
model, we use a corresponding three-factor model to clarify exactly what is being estimated. For
example, as shown in the first row of Table E.1, to understand the properties of the marginal desti-
nation model, which is a one-factor model, we use the SDI model. Similarly, to clarify the estimates
of the two-factor origin-destination model (i.e., Duncan’s “square additive model”), we use the DI-
Diff model. Note that we consider all of these models to be descriptive, such that these various
models are different ways of summarizing aggregate-level variability on a mobility table without
relying on information purely external to the data.
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Table E.1: Comparison of Class Models for a Mobility Table

Reference Model One-Factor Model Two-Factor Model

SDI model (E.1) marginal destination (E.6)  origin-mobility (E.14)
Diff-SI model (E.2) marginal mobility (E.8) origin-destination (E.10)
DI-Diff model (E.3) marginal origin (E.4) destination-mobility (E.12)

Notes: This table outlines the various one- and two-factor models analyzed based on a corresponding
reference model using matrix algebra and the logic of omitted variable bias. For example, the pa-
rameters of the marginal destination model and origin-mobility model are interpreted using the SDI
model. Equation numbers are in parentheses. Note that these models are all treated as descriptive,
and are thus distinct from a conventional mobility effects model, which has the form of f(O*, D*,
M*), where O*, D*, and M * are unobserved causal factors proxied by O, D, and M.

2. Interpreting the Parameters of One-Factor Class Models

In this section, we outline the three logically possible one-factor models (based on either origin,
destination, or mobility) that can be used to describe the main patterns on a mobility table. For
each one-factor model, we outline the relationship between the model’s parameters and those from
a corresponding model that includes all three factors (see Equations E.1, E.2, and E.3). To avoid con-
fusion with corresponding terms in the three-factor models outlined previously, we use asterisks to
denote the parameters in the one-factor models. In general, among all three one-factor models, we
recommend using only the marginal destination model, as the underlying slope estimated by this
model can be straightforwardly interpreted as a weighted sum of the ST and SM slopes from the
SDI model.

i. Marginal Origin Model

The first logically possible one-factor model is the origin class mobility model, which has the fol-
lowing form:

Wrijk = f(O) = p* + of + €, (E.4)

where /* is the intercept; o} are parameters for class origin using sum-to-zero deviation (or “effect”)
coding; and €, denotes individual-level error. Using the DI-Diff model as a reference (see Equation
E.3), the class origin model outlined in Equation E.4 can be shown to be equivalent to the following:

trrijk = (b4 ) + (nr + Gy, ) (0 = 7°) + (@ + ba,) + (€rijr + Nijr + vijr)  and
— . v

*
1 @ €ri

anr = (Trw(ji) + (T2 = T1)wns ) (E.5)

where 1 is the intercept; I'y is the ST slope; ['s —1'y = v —«vis the intra-destination slope; av) is the
marginal origin slope; wy; ;) is the relationship between the destination linear component and the
origin linear component conditional on the intercept and origin nonlinear components; wy ;) is the
relationship between the mobility linear component and the origin linear component conditional
on the intercept and origin nonlinear components;'* @, is the ith origin nonlinearity; ¢, @, and
¢g, are bias terms for the intercept, marginal origin slope, and the ith origin nonlinearity; €,;;
is individual-level error; 7,5, denotes unique cell-specific heterogeneity; v;;, denotes additional
heterogeneity attributable to class destination and mobility. The terms in brackets below Equation

4Those in the upper class can only be downwardly mobile or stay the same, while those in the lower class can only
be upwardly mobile or stay the same. Accordingly, the relationship between the mobility and origin linear components
is in general negative, and thus one can write (I's — I'1 ) (—w(z,s)) = (I't — I'2)w(x,q) in Equation E.5.
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E.5 denote the corresponding parameters from the marginal origin model presented in Equation
E.4.

Several points are worth noting regarding Equation E.5. First, the marginal origin slope, or
oy, underlying Equation E.4 is a weighted sum of the ST and the intra-destination slope, with
weights given by the relationships between destination and mobility, respectively, with origin. As
noted in the main text, the intra-destination slope compares heterogeneous class-mobility groups,
conflating structural with dynamic inequalities. For example, within a “middle” destination class,
comparing a “low” class group with a “high” class group is simultaneously comparing a group that is
upwardly mobile with another that is downwardly mobile. Because the marginal origin slope is in
part a function of the intra-destination slope, we generally do not recommend using estimates from
the marginal origin model."® Second, when the SM slope is zero (i.e., I'; = 0), then the marginal
origin slope will only be a function of the ST slope. In other words, in an absence of any observed
social mobility, the marginal origin model will reflect overall structural inequalities. It is in this
restricted sense that the marginal origin model could be used.'® Third, the intercept, marginal origin
slope, and origin nonlinearities will all have some degree of bias due to the exclusion of destination
and mobility nonlinearities from Equation E.4."” Finally, the error term of the marginal origin
model will reflect not just individual-level error, but also unique cell-specific heterogeneity as well
as additional heterogeneity attributable to class destination and mobility.

ii. Marginal Destination Model

More commonly, researchers frequently use a model that, while including other covariates, only
includes class destination, omitting class origin and mobility (e.g., Goldthorpe 1999). The marginal
class destination model, arguably the dominant model in sociology and demography, has the fol-
lowing general form:

Hrijk = f(D) = M* + 5; + G:ja (E6)

where (1* is the intercept; 3} are parameters for class destination using sum-to-zero deviation (or
“effect”) coding; and 6:]- denotes individual-level error. Using the SDI model as a reference (see
Equation E.1), the class destination model outlined in Equation E.6 can be shown to be equivalent
to the following:

trige = (4 &) + (B + €0 ) (G — 57°) + (B + fgj) + (€rijk + Mijk + vijr) and
~——
pw B3 €

B = (T1wi gy + Tawk.g)) (E7)

where 1 is the intercept; ['y = o + (3 is the ST slope and I'y = v + [ is the SM slope; 3, is the
marginal destination slope; w(; ;) is the relationship between origin linear component and the des-
tination linear component conditional on the intercept and the destination nonlinear components;
W(k,j) is the relationship between the mobility linear component and the destination linear compo-
nent conditional on the intercept and the destination nonlinear components; EJ is the jth destina-
tion nonlinearity; §,,, {3,, and { 3, are bias terms for the intercept, marginal destination slope, and

150ne is generally better off using a model of the form f(O, M). For additional discussion on the merits of models
of this general form, see the main text.

16Note that, with data organized by origin, destination, and mobility, one can test whether or not the SM slope is
zero or not using, for example, the SDI model.

"However, because our goal is primarily to conduct a descriptive rather than causal analysis, bias is less of a concern
than understanding what, exactly, is being described with a particular model.
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jth destination nonlinearity; €,;, is individual-level error; 7, denotes unique cell-specific hetero-
geneity; v, denotes additional heterogeneity attributable to class origin and mobility. The terms in
brackets below Equation E.7 denote the corresponding parameters from the marginal destination
model presented in Equation E.6.

Several main points are particularly noteworthy regarding Equation E.7. First, the marginal
destination slope is a weighted sum of the ST and SM slopes, where the weights are given by the
relationships between class origin and mobility, respectively, with class destination. Intuitively,
this reflects the fact that class destination is a function of both structural and mobility processes.
Accordingly, as an overall index of social stratification, class destination is in general a useful and
informative metric. Second, the intercept, marginal destination slope, and destination nonlinear-
ities will all have some degree of bias due to the exclusion of origin and mobility nonlinearities
from equation E.6. Finally, the error term of the marginal destination model will reflect not only
individual-level error, but also unique cell-specific heterogeneity on the mobility table, as well as
additional heterogeneity attributable to class origin and mobility.

iii. Marginal Mobility Model

The third possible one-factor class model is the marginal class mobility model (e.g., see Chen et al.
2022), which has the following form:

prije = fF(M) = p* + v + €rgs (E.8)

where p1* is the intercept; v, are parameters for class mobility using sum-to-zero deviation (or
“effect”) coding; and €, denotes individual-level error. Using the Diff-SI model as a reference (see
Equation E.2), the mobility model outlined in Equation E.8 can be shown to be equivalent to the
following;:

prije = (4 Uu) + (v + V) (k — k) + Gk + ¥5,.) + (€rigk + Mgk + vijr)  and

——
w 7 i

Yar = ((C1 — T2)wi by + Dawiin)) s (E.9)

where p is the intercept; I'y — I'y = v — v is the intra-destination slope and I's = v + /3 is the SM
slope; vas is the marginal mobility slope; w(; ) is the relationship between origin linear component
and the mobility linear component conditional on the intercept and mobility nonlinear compo-
nents;'® w; 1 is the relationship between the destination linear component and the mobility linear
component conditional on the intercept and mobility nonlinear components; 7y is the kth mobility
nonlinearity; v, 1.,, and 15, are bias terms for the intercept, marginal mobility slope, and kth
mobility nonlinearity; €,;;;, is individual-level error; 1;;, denotes unique cell-specific heterogene-
ity; 14, denotes additional heterogeneity attributable to class origin and destination. The terms
in brackets below Equation E.9 denote the corresponding parameters from the marginal mobility
model presented in Equation E.8.

As with the class destination model, several points are worth noting regarding Equation E.9.
First, the marginal mobility slope, or v,/, underlying Equation E.8 is a weighted sum of the intra-
destination slope and the SM slope, with weights given by the relationships between origin and des-
tination, respectively, with mobility. Again, as noted when discussing the marginal origin model,
the intra-destination slope compares heterogeneous class-mobility groups, conflating structural
with dynamic inequalities. Similarly, because the marginal mobility slope is a function of the intra-
destination slope, we generally do not recommend using estimates from the marginal mobility

8Similar to the corresponding weight in Equation E.5, the relationship between the origin and mobility linear com-
ponents is generally negative, and thus one can write (I'y — I'2) (—w(; 1)) = (I'2 — I'1)w(; &) in Equation E.9.
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model. Second, when the ST slope is zero (i.e., I'y = 0), then the marginal mobility slope will
only be a function of the SM slope. In other words, in an absence of any overall total social struc-
tural differences, the marginal mobility model will reflect the observed mobility patterns. It is in
this restricted sense that the marginal mobility model could be used.' Third, as with the marginal
destination model, the intercept, marginal mobility slope, and mobility nonlinearities will all have
some degree of bias due to the exclusion of origin and destination nonlinearities from Equation E.8.
Lastly, the error term of the marginal mobility model will capture not just individual-level error,
but also unique cell-specific heterogeneity as well as additional heterogeneity attributable to class
origin and destination.

3. Interpreting the Parameters of Two-Factor Class Models

In this section, we clarify the interpretation of the parameters from all three logically possible two-
factor models (origin-destination, destination-mobility, origin-mobility). As with the one-factor
models, we present each two-factor model and discuss the relationship between each model’s pa-
rameters and those of a corresponding model that includes all three factors (see Equations E.1, E.2,
and E.3). Again, to avoid confusion with corresponding terms in the three-factor models outlined
earlier, we use asterisks to denote parameters from two-factor models. It should be emphasized
that we treat these models as descriptive, not causal. In general, our analyses suggest that among the
two-factor models, an origin-mobility model is preferable to an origin-destination or destination-
mobility model. This is because the underlying linear terms of the origin-mobility model are the ST
and SM slopes, which estimate structural and dynamic inequalities, whereas the other two models
generate estimates of within-destination differences that compare heterogeneous origin-mobility
groups.

i. Origin-Destination Model

The origin-destination model, also known as the “square additive model” (Hope 1971, 1975), has
the following general form (cf. Duncan 1966: 94-95):

where p* is the intercept; o and 3} are parameters for origin and destination using sum-to-zero
deviation (or “effect”) coding; 1);; denotes group-level heterogeneity terms;?® and €7, j
level error. Using the Diff-SI model (see Equation E.2), the origin-destination model outlined in
Equation E.10 can be shown to be equivalent to the following:

denotes individual-

Note that, with data organized by origin, destination, and mobility, one can test whether or not the ST slope is
zero or not using, for example, the SDI model.

20Following Duncan (1966: 94-95), we will treat the group-level heterogeneity terms for all of the two-factor models
as orthogonal. These terms can be easily calculated as group-level residuals relative to a fully-saturated model. With
respect to the origin-destination model, as an alternative one can specify all possible pairs of interactions between
origin and destination. If the data are balanced such that there are an equal number of individual-level observations in
each origin-destination cell, then, using sum-to-zero deviation coding or orthogonal polynomial coding, the residuals
will be equivalent to specifying a full set of origin-destination interactions. The reason for this is that in such a setting
the columns for the origin-destination interactions will be orthogonal to the main origin and destination columns.
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trije = (0 + ¥u) + (T = T2) + Yy —ry)) (0 — 7°) + (& + va,)
——

H* af
+ (T2 +9r,) (G —57) + (B +¥z,) + (ijk + vijk) + €rijih, (E.11)
~—
B N3 €rij

where p is the intercept; I'y — I's = a — 7 is a slope of intra-destination differences; I's is the
SM slope; ; is the ith origin nonlinearity; Ej is the jth destination nonlinearity; v, ¥, —r,), ¥r,,
Vg, and ng are bias terms for the intercept, intra-destination slope, SM slope, ith origin nonlin-
earity, and jth destination nonlinearity; 7);;;, denotes terms for unique cell-specific heterogeneity;
Vijr denotes terms for unique mobility-attributed heterogeneity; and €, is individual-level er-
ror. The terms in brackets below Equation E.11 denote the corresponding parameters from the
origin-destination model presented in Equation E.10.

Three main points stand out from Equation E.11. First, the intercept, origin, and destination
parameters will all have some degree of bias due to the exclusion of the mobility nonlinear com-
ponents from the origin-destination model.?! Second, assuming that there is no bias due to the
exclusion of the mobility nonlinearities, either because the mobility nonlinearities are zero or the
mobility variables are unrelated to the variables for the intercept, origin, and destination terms (i.e.,
the included variables), then the underlying origin and destination slopes of the origin-destination
model will equal those from the Diff-SI model. In other words, the origin-destination model will
generate a slope of intra-destination differences. For this reason we do not generally recommend
using the origin-destination model without extreme care in the interpretation of the origin param-
eters in Equation E.10. Finally, the group-level heterogeneity terms 7;; from the origin-destination
model equal the sum of the unique cell-specific heterogeneity terms from the Diff-SI model, 7; ;x,
and the unique mobility-attributed heterogeneity terms v/;. The mobility-attributed heterogeneity
terms are simply the predicted values from the parameters for the mobility nonlinear components
(i.e., the excluded variables) using that part of the mobility variables that is unassociated with the
variables for the intercept, origin, and destination terms (i.e., the included variables).

ii. Destination-Mobility Model

The second logically possible two-factor model is the destination-mobility model, which has the
following general form:

Prijle = W5+ B85 + Y + Mk + €njns (E.12)

where 1i* is the intercept; 37 and y;, are parameters for destination and mobility using sum-to-zero
deviation coding; 7}, denotes group-level heterogeneity terms; and €, is individual-level error.
Using the DI-Diff model (see Equation E.3), the destination-mobility model outlined in Equation
E.12 can be shown to be equal to the following:

2INote that the individual-level error term is unbiased. The reason for this is that the origin-destination model with
the group-level heterogeneity terms is saturated, so the individual-level error will be the same as that from the Diff-SI
model with unique heterogeneity terms, which is also saturated. Again, because our focus here is on descriptive rather
than causal models, we are less concerned about the parameters being biased than that researchers have a clear idea of
what is being estimated in the models.
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prige = (14 6u) + (T1+ 6r,) (G — 5°) + (B; + ¢35,

——
w* Bj
+ (P2 = T1) + ¢ry—ry)) (B — k) + Gk + 65,) + (i + Vige) + €rijis (E.13)
~—~—
Vi M5k €rik

where 11 is the intercept; ['; = av+ 3 is the ST slope; I'y — 'y = 7y — avis the intra-destination slope;
Ej is the jth destination nonlinearity; 7, is the kth mobility nonlinearity; ¢, ¢r,, r,—1,), ¢Bj»
and ¢, are bias terms for the intercept, ST slope, intra-destination slope, jth destination nonlin-
earity, and kth mobility nonlinearity; 7;;;, denotes terms for unique cell-specific heterogeneity; v;
denotes terms for unique origin-attributed heterogeneity; and €,;j, is individual-level error. The
terms in brackets below Equation E.13 denote the corresponding parameters from the destination-
mobility model displayed in Equation E.12.

As with the origin-destination model, there are three main conclusions that follow from Equa-
tion E.13. First, as indicated by the presence of the ¢ parameters, the intercept, destination, and
mobility parameters will be biased because of the exclusion of the origin nonlinearities from the
destination-mobility model. Second, assuming that excluding the mobility nonlinearities results
in no bias, then the underlying destination and mobility slopes will equal those from the DI-Diff
model. Lastly, the group-level heterogeneity terms 7, equal the sum of the unique cell-specific
heterogeneity terms from the DI-Diff model, 7);;, and the unique origin-attributed heterogeneity
terms v;;;,. Similar to the origin-destination model, the origin-attributed heterogeneity terms are
just the predicted values from the parameters for the origin nonlinear components (i.e., the excluded
variables) using that part of the origin variables that is unrelated to the variables for the intercept,
destination, and mobility terms (i.e., the included variables).

iii. Origin-Mobility Model

The remaining two-factor model is the origin-mobility model, which has the following general
form:

Lrije = 15+ af + 95 + 0l + €, (E.14)

where ;* is the intercept; o and -y} are parameters for origin and mobility using sum-to-zero
deviation coding; 1, denotes group-level heterogeneity terms; and €, is individual-level error.
Using the SDI model (see Equation E.1), the origin-mobility model presented in Equation E.14 is
shown to be equivalent to the following:

prije = (0 + &) + (T + &, ) (@ — i) + (as + &3,)

——
wr aj
+ (P2 +&ry) (K — k%) + (G + &5,) +(Mijie + Vijk) + €rijis (E.15)
~—
Vi 7% €rik

where (1 is the intercept; 'y = « + (3 is the ST slope; I's = v + [ is the SM slope; «; is the ith
origin nonlinearity; 7 is the kth mobility nonlinearity; £, {1, &, £5,, and &, are bias terms for the
intercept, ST slope, SM slope, 7th origin nonlinearity, and kth mobility nonlinearity; ;5 denotes
terms for unique cell-specific heterogeneity; v;;;, denotes terms for unique destination-attributed
heterogeneity; and €, is individual-level error. The terms in brackets below Equation E.15 refer
to the corresponding parameters from the origin-mobility model shown in Equation E.14.
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As with the other two-factor models, there are three main takeaways from Equation E.15. First,
the intercept, origin, and mobility parameters will be biased because of the exclusion of the destina-
tion nonlinearities from the origin-mobility model. Second, assuming that excluding the destina-
tion nonlinearities produces no bias, then the underlying origin and mobility slopes will equal those
from the SDI model. Finally, the group-level heterogeneity terms 7}, equal the sum of the unique
cell-specific heterogeneity terms from the SDI model, 7);;;, and the unique destination-attributed
heterogeneity terms v;;;. The destination-attributed heterogeneity terms are, like those for the
other two-factor models, simply the predicted values from the parameters for the destination non-
linearities (i.e., the excluded variables) using that part of the destination variables that is unrelated
to the variables for the intercept, origin, and mobility terms (i.e., the included variables).

4. Derivation of Relationships

In this section we show how the relationships outlined above can be derived using matrix algebra
and the logic of omitted variable bias. We first present the derivation for the one-factor formulas
using the one-factor destination model as an example. Next, we show the derivation for the two-
factor models using the origin-destination model (i.e., Duncan’s “square additive model”).

i. Derivation for One-Factor Models

To show the derivation for the one-factor models, we use the class destination model, but similar
calculations can be applied to derive the one-factor origin and mobility models. Suppose we fit
the one-factor destination model (Equation E.6) on an individual-level data set indexed by origin,
destination, and mobility. To reveal the underlying structure of the model, it is useful to express
Equation E.6 as a linearized destination model, which decomposes each deviation from the overall
mean into its constituent linear and nonlinear components:

prijh = f(D) = p* + B*( = 5°) + B; + €}, (E.16)

where the parameters are the same as in Equation E.6 except 5* denotes the destination slope and
g}‘ the jth destination deviation from the overall mean. Because only the coding scheme differs be-
tween Equation E.16 and Equation E.6, we will refer to them interchangeably as a class destination
model in the following discussion.

Let y denote an R X 1 column vector of outcome values (e.g., means), 1 an R X 1 column vector
of 1's,d an R x 1 column vector of the class destination linear component, and D an R x (J —2)
matrix of orthogonal destination polynomials with no linear component. Using matrix notation,
the marginal destination model in Equation E.16 can be expressed as follows:

y =1y +d.8; + DB +¢". (E.17)

where 1/* is again the intercept, 3} is the estimated marginal destination slope, B* isa(J—2)x1
column vector of nonlinear destination parameters, and €* is an R X 1 column vector of individual-
level error terms.

For the purposes of comparison, note that the SDI model (see Equation E.1) can be specified in
matrix form as: ~ -

y =11+ Oa + My +DB +1n +e, (E.18)
where (1 is the intercept, O is an R x (I — 1) matrix of orthogonal origin polynomials, & is an
(I — 1) x 1 column vector of linear and nonlinear origin parameters, M isan R x (K — 1) matrix
of orthogonal mobility polynomials, 7y is a (K — 1) X 1 column vector of linear and nonlinear
mobility parameters, Disan R x (J — 2) matrix of orthogonal destination polynomials without
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the linear component, B isa (J — 2) x 1 column vector of nonlinear destination parameters, 7 is
an R X 1 column vector of cell-specific heterogeneity terms, and € is an 2 X 1 column vector of
individual-level error terms.

To clarify the interpretation of the marginal destination model, we need to specify an auxiliary
equation that expresses the association between those variables included in the marginal destination
model and those excluded from the marginal destination model but included in the SDI model. To
do so, we first define a matrix S of dimension J x (I + K — 2) as follows:

S = (X'X)"'X'zZ, (E.19)

where X = [1d; D]isan R X J matrix of 1’s, the destination linear component, and higher-order
orthogonal destination polynomials; and Z = [O, M]isan R X (I + K — 2) matrix of orthogonal
origin and mobility polynomials. The matrix S is simply a collection of parameters representing
relationships between those variables included in the marginal destination model (X) and those
variables excluded from the marginal destination model but included in the SDI model (Z). Using
Z, S, and X, we can accordingly define an auxiliary equation compactly as Z = XS + Uy or,
equivalently:

[0,M] = 1s, + dsq4, + DSz + Ujo.u, (E.20)

where s, isal x (I + K — 2) row vector of parameters, sy, isa 1 x (I + K — 2) row vector of
parameters, Sy isa (J —2) x (I + K —2) matrix of parameters, and Uy isan R x ( + K —2)
matrix of error terms representing that part of O and M unrelated to the variables included in
the marginal destination model (i.e., the intercept, destination linear component, and higher-order
destination polynomials).*?

To clarify the meaning of the parameters of the marginal destination model (Equation E.17), we
can simply substitute Equation E.20 into Equation E.17. This is easily accomplished by re-writing
EquationE.18 asy = 1u + Z{ + DB +n + €, where  isan (I + K — 2) X 1 column vector of
origin and mobility parameters such that:

a
- (5)

We then just plugin Z = 1s,, + dsq, + DS 5 + Uy into this equation. After rearranging terms,
we obtain the following:

y =1 (n+s,)+dy (4,8) +D (B + S5¢) +€+1+ UL, (E.21)
—— T ~ ~- v
,LL* z B* 6*

which reveals how the SDI model is related to the marginal destination model. Several points are
worth emphasizing. First, the marginal destination slope is a weighted sum of the ST and SM slopes
(which are contained in (), with weights given by the relationships between the destination linear
component and the origin and mobility linear components (which are contained in the row vector
sS4, )- Second, the parameters from the marginal destination model will all have some degree of bias
due to the exclusion of the origin and mobility components. Depending on the structure of the data,
the origin and mobility polynomials in Z will be more or less associated with the set of included
variables, nan~1e1y, the vector 1, destination linear component d;, and higher-order destination
polynomials D.?* If these relationships are strong, then the bias will be large, and the parameter

22Note that s, is simply the first row of S, s4; is the second row, and Sﬁ isrows 3to J of S.
Z3However, note that, because the marginal destination slope is defined by the weighted sum of the ST and SM slopes,
the bias for the marginal destination slope is a function of only the relationship between the included variables and the
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estimates for the intercept and destination nonlinear terms from the marginal destination model
and the SDI models will differ, possibly quite substantially. By contrast, if these relationships are
weak, then the bias will be relatively small, such that the intercept and destination nonlinear terms
of the marginal destination model will be approximately equal to those from the SDI model. Lastly,
the individual-level error term (€*) of the marginal destination model can be interpreted as the sum
of individual-level error terms from the SDI model, the unique cell-specific heterogeneity terms
1), and the column vector of origin and mobility parameters (, the latter of which are weighted by
Uy, or that part of the excluded variables (i.e., the orthogonal origin and mobility polynomials)
unrelated to the variables included in the marginal destination model.

ii. Derivation for Two-Factor Models

We illustrate the derivation for the two-factor models using the origin-destination model, but sim-
ilar calculations can be applied to the destination-mobility and origin-mobility models. Suppose
we fit the origin-destination model (Equation E.10) on an individual-level data set indexed by ori-
gin, destination, and mobility. To reveal the underlying structure of the model, it is useful to ex-
press Equation E.10 as a linearized origin-destination model with group-level heterogeneity terms,
which decomposes each deviation from the overall mean into its constitutive linear and nonlinear
components: frigh = 1W° 4+ Q% (i — %)+ & + B — ) + B} 5 + €k, (E22)
where the parameters are the same as in Equation E.10 except a* denotes the origin slope, & the
ith origin deviation from the overall mean, 3* the destination slope, and gj the jth destination de-
viation from the overall mean. Because Equation E.22 is the same as that in Equation E.10, but with
a different coding scheme, we will refer to them interchangeably as an origin-destination model in
the discussion that follows.

Let y denote an R X 1 column vector of outcome values (e.g., means), 1 an R X 1 column
vector of 1’s, O an R x (I — 1) matrix of orthogonal origin polynomials, and D an R x (J — 1)
matrix of orthogonal destination polynomials. Using matrix notation, the origin-destination model
in Equation E.22 can be expressed as follows:

y=1u"+ Oa™+ DB* +n" + € . (E.23)

where p* is again the intercept, @* isan (I — 1) x 1 column vector of linear and nonlinear origin
parameters, 8*isa (J — 1) X 1 column vector of linear and nonlinear destination parameters, n* is
an R X 1 column vector of group-level heterogeneity parameters, and €* is an R X 1 column vector
of individual-level error terms.

For the purposes of comparison, note that the Diff-SI model (see Equation E.2) can be specified

in matrix form as: —
y=1u+ Oa + DB + My +n +e, (E.24)

where 11 is the intercept, awisan (/ — 1) X 1 column vector of linear and nonlinear origin parameters,
Bisa(J—1)x 1 column vector of linear and nonlinear destination parameters, M an R x (K —2)
matrix of orthogonal mobility polynomials with no linear component, g isa (K — 2) X 1 column
vector of nonlinear mobility parameters, 77is an 12 X 1 column vector of cell-specific heterogeneity
terms, and € is an R X 1 column vector of individual-level error terms.

Similar to the calculations for the marginal destination model in the previous section, to inter-
pret the meaning of the parameters of the origin-destination model, we need to specify an auxiliary
equation that expresses the association between those variables included in the origin-destination

origin and mobility polynomials without the linear component.
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model and those excluded from the origin-destination model but included in the Diff-SI model. As
before, we can define a matrix S of dimension (I +.J — 1) x (K —2)as S = (X X)~'X'Z, where
X =[10D]jisan R x (I + J — 1) matrix of 1’s, orthogonal origin polynomials, and orthogo-
nal destination polynomials; and Z = M isan R x (K — 2) matrix of orthogonal class mobility
polynomials with no linear component. Again, the matrix S is simply a collection of parameters
representing relationships between those variables included in the origin-destination model (X)
and those variables excluded from the origin-destination model but included in the Diff-SI model
(Z). Using Z, S, and X, we can accordingly define an auxiliary equation compactlyas Z = XS+U,
or, equivalently:

M = 1s, + OSp + DSp + U, (E.25)
where s, isa 1 X (K —2) row vector of parameters, Sp isan (/ —1) X (K —2) matrix of parameters,
Spisa(J —1) x (K —2) matrix of parameters, and Uy isan R x (K — 2) matrix of error terms

representing that part of M unrelated to the variables included in the origin-destination model.**

To clarify the meaning of the parameters of the origin-destination model (Equation E.22), we
can simply substitute Equation E.25 into Equation E.23. After substituting and rearranging terms,
we obtain the following equation:

y=1(p+s,9)+0 (a+So¥)+D(B+Spy)+n+Uyzy)+ € , (E.26)
. ~ 2 (. ~ 2 . ~ - - ~~ 4 g
lu* a* ﬁ* n* e*

which reveals how the Diff-SI model is related to the origin-destination model. As noted previously,
the intercept, origin, and destination parameters from the origin-destination model will all have
some degree of bias due to the exclusion of the mobility nonlinear components. Depending on
the structure of the data, the orthogonal mobility polynomials in M will be more or less related
to the vector 1, orthogonal origin polynomials O, and orthogonal destination polynomials D. If
these relationships are strong, then the bias will be large, and the parameter estimates from the
origin-destination and the Diff-SI models will differ, possibly quite substantially. By contrast, if
these relationships are weak, then the bias will be relatively small, such that the intercept, origin,
and destination parameters of the origin-destination model will be approximately equal to those
from the Diff-SI model. Similarly, the vector of group-level heterogeneity terms * in the origin-
destination model, which can be interpreted as a restricted set of origin-destination interactions, is
equal to a weighted sum of the cell-specific heterogeneity terms ) and the mobility nonlinearities
7, the latter of which are weighted by U7, or that part of the excluded variables unrelated to the
variables included in the origin-destination model.

Equation E.26 additionally clarifies how the mobility nonlinearities can be viewed as a kind
of “structured” interaction with respect to origin and destination.”®> We can show this relationship
by taking the equation n* = 7 + Ujg;y and solving for 4, the mobility nonlinearities from the
Diff-SI model. Because Ug; is non-square, it does not have a regular inverse. However, it has a
Moore-Penrose generalized inverse that is equal to the left inverse of Uz;. Solving for 7y gives us
the following:

¥=U(n"—n) = (Ui Uy 'Ugp(n" —n)
= (UpUp) U (E.27)

Z4Note that s, is simply the first row of S, Sp isrows 2 to  of S,and Sp isrows [ + 1tol +J — 1 of S.
25What this means in practice is that the SDI model outlined in the main text is, in fact, interactive in the data although
it is additive in the parameters.
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where the plus + denotes a Moore-Penrose generalized inverse and (U/MUM)_IUIM is the left
inverse of U372 Equation E.27 reveals that the mobility nonlinearities are equal to a regression
model predicting heterogeneity from origin-destination interactions using that part of the orthog-
onal mobility polynomials unrelated to the intercept, origin, and destination variables included in
the origin-destination model.”” Similar derivations as those outlined in this section can be con-
ducted in an analogous way for the destination-mobility and origin-mobility models.?®

5. Higher-Order Interactions on a Mobility Table

So far little has been stated about the structure of the higher-order interactions beyond that for
origin, destination, and mobility. In this section we discuss higher-order interactions on mobility
tables. As we illustrate, only a limited number of interactions can be included beyond the main set of
parameters for origin, destination, and mobility. This reflects the fact that, descriptively, including
all three main parameters means there is already a structured interaction captured by a three-factor
model.

To illustrate the limited number of interactions that can be explicitly included, suppose we use
orthogonal polynomial contrasts so that we have I — 2, J — 2, and K — 2 columns for the higher-
order terms of origin, destination, and mobility, respectively. Then the SDI model?® can be repre-
sented as:

I—-1 J—1 K—-1
Yoiji = i+ (a+ Bop + (v+ B)ymp + Y a0+ > Bdj+ > vFmu +mijk + Eriis (E.28)
i=2 j=2 k=2

where 1);;;, are cell-specific heterogeneity terms and &5, are individual-level errors. We treat these
as residual (or orthogonal) to the main parameters in the model in the discussions above (see also
Duncan 1966).

However, an alternative representation of the 7);;;, terms is to specify them as higher-order in-
teractions. However, because of the linear dependency among the variables, only a restricted set
of interactions can be included. Specifically, given an origin-destination mobility table, one can
specify the 7;;;, terms as follows:

J-1 —2J-1
Nijk = Z Brj (ord;) + Z Bij (0idy). (E.29)
=2 i=2 j=2

where the number of additional parameters above the baseline SDI model are (/ —2)(.J —2). Note
that these additional terms represent interactions of a “smoothed” origin curve with the destina-

26Note that we can drop 7 from Equation E.27 because, by construction (see Equation E.1), it is unrelated to the
orthogonal mobility polynomials such that (U;\YU ) ’1U/M17 will produce a K — 2 column vector of zeros.

27The more the mobility variables are related to the heterogeneity from the origin-destination interactions, the larger
in absolute value the size of the mobility nonlinearities. Note further that if the mobility variables are unrelated to the
variables included in the origin-destination model, then Uz = M. Accordingly, Equation E.27 simplifies further

to (1/\71I M) ’1M/'r]*. In other words, assuming the included and excluded variables are unrelated, we can simply take
the mobility variables and use them to predict the heterogeneity from the origin-destination interactions to obtain the
mobility nonlinearities. To the extent that the mobility variables are only weakly related to the intercept, origin, and
destination variables in the origin-destination model, then this procedure will reproduce, within an error of approxi-
mation, the mobility nonlinearities from the Diff-SI model.

Z8However, note that, because there is inherent censoring on a mobility table with respect to mobility, one cannot
include all mathematically pairwise interactions in a destination-mobility or origin-mobility model. By contrast, al-
though we have treated origin-destination interactions as cell-specific residuals, one could model them as all possible
pairwise interactions on a mobility table.

We use the SDI model for illustrative purposes here, but our results apply to any of the models discussed above.
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tion nonlinear components. These interactions could be reversed so that the parameters represent
interactions of a “smoothed” destination curve with the origin nonlinear components.

To illustrate how the additional terms can be included in an L-ODM model, consider data from
an origin-destination mobility table. Given a mobility table, one can incorporate additional het-
erogeneity using the particular set of origin-destination interactions outlined in Equation E.29.
The (1; parameters are interaction terms between the origin linear component and the destina-
tion nonlinear components, while the 3;; parameters are interactions between the origin nonlinear
components (except for the last origin nonlinear component) and the destination nonlinear com-
ponents. This allows a smoothed origin curve to vary as a function of the destination nonlinear
components.

To show what the full SDI model with higher-order origin-destination interactions would be,
suppose there are [ = 5 origin groups and J = 5 destination groups (and thus K = [ +J—1 =9
mobility groups). Above the baseline SDI model, we can include (I — 2)(J — 2) = 9 additional
parameters representing particular origin-destination interactions. Then the SDI model with fully
specified higher-order origin-destination interactions is:

prijk = o+ (v + B)mp + (a+ Blop + @?os + -+ + a’os + fdy + -+ Bdy +7Pma + -+ mg+
Bra(ords) + Brs(ords) + Bra(ornds) + Poz(02da) + Pag(02ds) + Paa(02ds)+
B32(03d2) + B33(03d3) + B34(03d4) + &rijin, (E.30)

where the additional terms represent intra-mobility heterogeneity, or heterogeneity within the di-
agonals of the mobility table. However, we caution against indiscriminately including these higher-
order terms directly in the main model without checking for multicollinearity. In general, including
these additional interactions results in a full-rank design matrix (and thus the model is identified),
but in practice these additional columns are highly collinear with the main columns of the baseline
SDI model, resulting in highly unstable estimates.
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Online Appendix F: Additional Structural and Dynamic Inequalities

In the main manuscript, we focus on several key parametric expressions that can be derived from
the structural and dynamic inequality (SDI) model. Below, we show a more complete list of expres-
sions that can be derived from the SDI model and then illustrate the analytic use of one additional
expression that focuses on class destination.

Full list of expressions derived from the SDI model

Table F.1: Summarizing Structural and Dynamic Inequalities on a Mobility Table

Geperal Specific Mathematical Expression
Terminology Summary

Social Structure Slope Ly —1d*) forall 4
Social Structure Curve Fi(i—i*)+a forall 4

Structural Inequality ) o ~ . o o
Social Structure Surface Di(i—d*) +a; + Bj for combinations of ¢, j
Local Social Structure Curves I'y (i —¢*) + a; + 5[i+k—1] for all ¢ in each mobility group k
Social Mobility Slope La(k — k*) forall k
Social Mobility Curve Fa(k —k*) 4+ 7% forall k

Dynamic Inequality ~
Social Mobility Surface To(k—k*) + 7k + B for combinations of k, j
Local Social Mobility Curves T'a(k — k*) + 7% + B[kJri—I] for all & in each origin group %
Adjusted Marginal Lk .
Destination Slope (Flw(”) + F2w(k’7)) (G =77 forallj
Adjusted Marginal L 3 .
Destination Curve (Flw(i’j) + F2w(k’j)) G =3 +5; forall j

Structural & Dynamic Overall Comparative ~ .

Inequalities Mobility Curl\)re ¢i +Ta(k — k*) + 7k for all k in each origin group ¢

Adjusted Comparative ) % ~ ~ . .. .
Mobility Curve bi + T2k —k*) +Fk + Bligr—1] for all k in each origin group ¢
Unadjusted Comparative

Mobility Curve ¢i +Ta(k — k*) + 7, + E[z’+k—1] + Nifi4k—1)x forall kin each origin group 4

Notes: T'y = a+ Sand 'y = v+ 3. The quantity ¢; is equal to I'y (i — i*) + &;, which is a single value for a given origin
group ¢.

Adjusted Marginal Destination Curve

To illustrate the analytic use of just one additional expression from Table F.1, we now discuss the
adjusted marginal destination curve. So far we have focused on examining the data through the lens
of the SDI model, which is a general model of the form Y = f(O, M) + €. However, as we outlined
in earlier sections, it may be useful in some circumstances to also examine the data using a marginal
class destination model, which has the general form of Y = f(D) + ¢, where again, without loss of
generality, € is a normally distributed error term with a mean of zero. A particularly useful summary
is the adjusted marginal destination curve, which is equal to:

Bu(j—3°)+ Ej = (Flw(i,j) +F2w(k,j)>(j -J%) +Ej for j=1,...,J, (F.1)
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where 'y = o+ 3; 'y = v+ 3; w(; ;) is the relationship between the origin linear component and
the destination linear component conditional on the origin, destination, and mobility nonlineari-
ties; and, lastly, wyy ;) is the relationship between the mobility linear component and the destination
linear component again conditional on the origin, destination, and mobility nonlinearities. This
curve is equivalent to a simple class destination model (see Equation E.6 in Online Appendix E), but
we have adjusted for the origin, destination, and mobility nonlinearities. Failing to adjust for the
origin and mobility nonlinearities will introduce bias into the estimated overall class destination
gap. However, a more practical reason for adjusting for the origin and mobility nonlinearities is
that we can decompose the overall (linear) class destination gap into structural and dynamic com-
ponents. This allows us to answer crucial questions regarding the extent to which cross-destination
differences are attributable to differences in the social structure versus social mobility.

The I',&0(; j) term in Equation F.1 gives the contribution of social structure to the adjusted class

destination slope, while fg@(k’j) gives the contribution of social mobility. In general, social struc-
ture will contribute more to the class destination slope the greater the degree of correlation between
class origin and destination, as well as the greater the relationship between the ST slope and the out-
come. Similarly, in general, social mobility will contribute more to the class destination slope the
greater the degree of correlation between class mobility and destination, as well as the stronger the
relationship between the SM slope and the outcome. If social mobility does not vary, destination
gaps reflect only social structure; if there is no structural inequality, they reflect only social mobil-
ity. In other words, the SDI model can be used to decompose any marginal class destination gap,
i.e., the kind of social class gaps that are arguably the most common estimand in social stratification
research, into distinct structural- versus mobility-based components.

Figure F.1: Adjusted Marginal Destination Curve
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Notes: Panel shows the adjusted marginal class destination curve,
which is estimated conditional on the origin and mobility nonlin-
earities. The curve is a function of By (j — j*) + Bj for all class
destination groups j. Data are based on Sobel (1981).

Figure F.1 shows the adjusted marginal class destination curve for the fertility data. As can
be seen, there is a general observed decline in fertility as one compares lower versus higher class
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destinations. The underlying adjusted marginal destination slope is 5); = —0.290, indicating a
negative relationship between fertility and class destination. Using Equation F.1, we can decompose
this overall slope into structural and social mobility components:

By = (fla(m—) n fQQ(,w-)) — (—0.317)(0.740) + (—0.213)(0.260) = (—0.235) + (—0.055),  (F.2)

the sum of which equals adjusted marginal destination slope, or —0.290. In this case, most of the
class destination gap is a function of structural differences, reflecting both the relatively large ST
slope as well as the strong relationship between the class destination linear component and class
destination origin linear component.
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Online Appendix G: Supplemental Tables and Figures

Table G.1: Bounding Formulas for Slopes

Origin Bounds: Omin < @ < Omax
'l — omax < ﬂ <TI'{ — dmin
(FQ - Fl) + amin <7 < (F2 - Fl) + Omax

Destination Bounds: 't — Bmax < o <TI't — Bmin

/Bmin < /B < ﬁmax
Iy — 5max <~ < Iy — /Bmin

Mobility Bounds: (F'1 = T2) + Ymin £ @ < (I'1 = T2) + Ymax
I'2 = Ymax < B8 <T'2 — Ymin

“Ymin < v < “Ymax

Notes: Origin, destination, and mobility slopes are «, 3, and 7, respectively, with (.)min
and (.)max denoting minimum and maximum values of the bounds. We denote I'y =
a+Bly=+7T1-Ty=a—vadly - T'; =7y —a.
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Table G.2:

Bounds Given by Setting the Sign of One or Two Slopes

Sign of One Slope Origin Destination Mobility

If « > 0 then: 0<a<+ —o < pB<Iy (Te—T4) <v <400
If < 0 then: —oco<a<0 I'h <8< +o00 —c0o <y < (Ty—Ty)
If 8 > 0 then: —co<a<Iy 0< B <40 —o0o <y <INy

If 8 < 0 then: I'<a<+oo —0< <0 Iy <y <4

If v > 0 then: (T -Ty) <a< 40 —0 < B <TIy 0<~y <+

If v < 0 then: —co<a< (I —Ty) 'y <8< +00 —0<y<0
Sign of Two Slopes Origin Destination Mobility
IfaZOandﬁEOthen: 0<a<TIy Ogﬁgl—‘l (FQ—Fl)S’YSFQ
If « < 0and S8 < 0 then: ' <a<o0 rh<pg<o Iy <y < (Ty—Ty)
If 3> 0and v > O then: 1 -Ty) <a<Iy 0<p<Ty 0<y<TIy

If 3 < 0and~y < 0 then: I <a< @ —-Ty) ,<B<0 I, <y<0

If @ > 0andy < 0 then: 0<a< (I —Ty) <<y (T —Ty) <y <0
If @« < 0and~ > 0 then: T -Ty) <a<0 ' <p<TIy 0<y<([y—Ty)

Notes: Origin, destination, and mobility slopes are v, 3, and , respectively, with (.)min and (.)max denoting
minimum and maximum values of the bounds. We denote I'y = a + 5,I's = 8+, I'1 —T's = o — 7, and

].—‘27].—‘1 =7 — Q.
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Table G.3: Relationships among ST, SM, & Intra-Destination Slopes

Social Structure (ST) Slope: IfI'y =0, then: Iy —17 = 1y
IfI'y > 0, then: Iy — 1y < I

IfT'; <0, then: Iy — 1y > Ty

Social Mobility (SM) Slope: IfI’'y =0, then: I't—-Ty = 1Ty
IfI'y >0, then: I't -1y < Iy

IfI's <0, then: 't =TI > I'y

Intra-Destination Origin Slope: IfI'y — 'y =0, then: I = Ty
IfI'y — 'y > 0, then: I'y > Iy

IfI'y —I'ys <0, then: I'y < I

Intra-Destination Mobility Slope:  IfI'y — I'y = 0, then: I's = I4
IfI'y — 'y >0, then: Iy > Iy

IfI'y — T’y <0, then: Iy < In

Notes: Ty = a+ fand 'y = v+ S.
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Figure G.1: Nonlinearities for Origin, Destination, and Mobility
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Notes: Panels (a), (b), and (c) show the origin, destination, and mobility nonlinearities, which are con-
strained to sum to zero. Data are based on Sobel (1981).
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Number of Children

Figure G.2: Social Structure and Social Mobility Slopes
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Notes: Panel (a) shows the social structure (ST) slope, while panel (b)
shows the social mobility (SM) slope. I'y = a + fand 'y = v + £.
Data are based on Sobel (1981).
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