

Online Appendices for  
“Beyond the Diagonal Reference Model:  
Critiques & New Directions in the Analysis of Mobility Effects”

Ethan Fosse  
*University of Toronto*

and

Fabian T. Pfeffer  
*Ludwig-Maximilians-University Munich*

## Online Appendix A: Prior Contributions Using the DRM

As shown in Figure 1 of the main text, the DRM has been widely and increasingly used to estimate the effects of social mobility on a wide range of outcomes. In this appendix, we provide a schematic summary of the topics addressed in these contributions and the general direction of effects that have been estimated. The tables below highlight the findings from the key studies upon which Figure 1 rests.

Table A.1: Social and Cultural Attitudes

| Author                 | Year | Outcome Measure(s)            | Null | + | - | NC |
|------------------------|------|-------------------------------|------|---|---|----|
| Kulis                  | 1987 | Attitudes towards family      | X    | X |   |    |
| Marshal and Firth      | 1999 | Life satisfaction             |      | X |   |    |
| Tolsma et al.          | 2009 | Ethnic attitudes              | X    | X |   |    |
| Coulangeon             | 2013 | Musical taste                 |      |   | X |    |
| Daenekindt and Roose   | 2013 | Aesthetic dispositions        | X    | X |   |    |
| Daenekindt and Roose   | 2014 | Musical taste                 |      |   | X |    |
| Coulangeon             | 2015 | Musical taste                 | X    | X |   |    |
| Chan and Turner        | 2017 | Musical taste                 |      |   | X |    |
| Sieben                 | 2017 | Child-rearing values          | X    |   |   |    |
| Domański and Karpiński | 2018 | Culinary taste                |      |   | X |    |
| Schaeffer              | 2019 | Discrimination perception     |      |   | X |    |
| Rotengruber and Tyszka | 2021 | Musical taste                 |      |   | X |    |
| Creighton et al.       | 2022 | Attitudes towards immigration | X    | X |   |    |
| Mijs et al.            | 2022 | Meritocratic beliefs          |      |   | X |    |

*Notes:* Positive effects are given by +, negative effects by -, and zero or near-zero effects by "Null." Those effects that are indeterminate are given as "NC" (Not Classifiable).

Table A.2: Health

| Author                     | Year | Outcome Measure(s)             | Null | + | - | NC |
|----------------------------|------|--------------------------------|------|---|---|----|
| Monden and de Graaf        | 2013 | Self-assessed health           |      |   |   | X  |
| Missinne et al.            | 2015 | Health care use                |      |   | X |    |
| Yang                       | 2016 | Smoking and drinking           |      |   |   | X  |
| van der Waal et al.        | 2017 | Obesity                        |      |   | X |    |
| Billingsley and Matysiak   | 2018 | Fertility                      |      |   |   | X  |
| Dennison                   | 2018 | Drug use                       |      |   |   | X  |
| Tarrence                   | 2018 | Self-rated health              |      |   | X | X  |
| Präg and Richards          | 2019 | Stress biomarkers              |      |   | X |    |
| Steiber                    | 2019 | Subjective health satisfaction |      |   |   | X  |
| Gugushvili et al.          | 2020 | Smoking and drinking           |      |   | X |    |
| Yang                       | 2020 | Smoking                        |      | X |   | X  |
| Veenstra and Vanzella-Yang | 2021 | Self-rated health              |      |   |   | X  |
| Zelinska et al.            | 2021 | Self-rated health              |      |   | X |    |
| Bulczak and Gugushvili     | 2022 | Cardiometabolic risk           |      |   |   | X  |
| Bulczak et al.             | 2022 | Various health measures        | X    |   |   |    |
| Graf et al.                | 2022 | Biological aging               |      |   | X |    |
| Iveson et al.              | 2022 | Self-rated health              |      | X |   |    |
| Kempel et al.              | 2022 | Cardiometabolic risk           |      |   | X |    |
| Luo                        | 2022 | Fertility                      |      |   |   | X  |
| Tarrence                   | 2022 | Self-rated health              |      |   | X |    |

*Notes:* Positive effects are given by +, negative effects by -, and zero or near-zero effects by "Null." Those effects that are indeterminate are given as "NC" (Not Classifiable).

Table A.3: Political Outcomes

| Author                             | Year | Outcome Measure(s)                 | Null | + | - | NC |
|------------------------------------|------|------------------------------------|------|---|---|----|
| De Graaf et al.                    | 1990 | Left/Right preferences             |      | X |   |    |
| Weakliem                           | 1992 | Left/Right voting                  |      | X |   |    |
| Clifford and Heath                 | 1993 | Left/Right voting                  |      |   | X |    |
| Nieuwbeerta and de Graaf           | 1993 | Left/Right voting                  |      |   | X |    |
| Breen and Whelan                   | 1994 | Left/Right preferences             | X    |   | X |    |
| Graaf et al.                       | 1995 | Left/Right preferences             |      |   | X |    |
| Nieuwbeerta                        | 1995 | Left/Right voting                  |      | X |   |    |
| Nieuwbeerta et al.                 | 2000 | Left/Right voting                  | X    |   |   |    |
| Breen                              | 2001 | Left/Right preferences             | X    |   | X |    |
| Paterson                           | 2008 | Left/Right attitudes               |      |   |   | X  |
| Daenekindt et al.                  | 2018 | Trust                              | X    | X |   |    |
| Fan and Yan                        | 2019 | Political Participation            |      |   |   | X  |
| Jaime-Castillo and Marqués-Perales | 2019 | Redistribution preferences         | X    |   |   |    |
| Kraus and Daenekindt               | 2022 | Attitudes towards multiculturalism |      | X |   |    |
| McNeil                             | 2022 | Left/Right attitudes               | X    | X |   |    |
| McNeil and Haberstroh              | 2023 | Opinion on Brexit                  |      | X |   |    |
| Wilson et al.                      | 2022 | Redistribution preferences         |      |   | X |    |

*Notes:* Positive effects are given by +, negative effects by -, and zero or near-zero effects by "Null." Those effects that are indeterminate are given as "NC" (Not Classifiable).

Table A.4: Psychological Well-being

| Author             | Year | Outcome Measure(s)                                         | Null | + | - | NC |
|--------------------|------|------------------------------------------------------------|------|---|---|----|
| Houle and Martin   | 2011 | Psychological distress                                     | X    |   |   |    |
| Zang and de Graaf  | 2016 | Happiness                                                  | X    |   |   |    |
| Daenekindt         | 2017 | Dissociation                                               | X    | X |   |    |
| Schuck and Steiber | 2018 | Subjective well-being                                      |      | X |   |    |
| Gugushvili et al.  | 2019 | Depression                                                 |      | X |   |    |
| Dhoore et al.      | 2019 | Life satisfaction                                          | X    |   |   |    |
| Schuck             | 2019 | Subjective well-being                                      | X    |   | X |    |
| Zhao and Li        | 2019 | Subjective well-being                                      |      | X |   |    |
|                    |      | Subjective social status,<br>perceived financial situation |      |   |   | X  |
| Engzell and Ichou  | 2020 |                                                            |      |   |   |    |
| Gugushvili et al.  | 2021 | Allostatic load                                            |      | X |   |    |
| Kaiser and Trinh   | 2021 | Life satisfaction                                          |      | X |   |    |
| Zelinska et al.    | 2021 | Subjective well-being                                      |      | X |   |    |
| Kwon               | 2022 | Subjective well-being                                      | X    |   |   |    |

*Notes:* Positive effects are given by +, negative effects by -, and zero or near-zero effects by "Null." Those effects that are indeterminate are given as "NC" (Not Classifiable).

## Online Appendix B:

### Mobility Models & The Identification Challenge: A General Introduction

In this section, we first present a general mobility effects model that incorporates primary parameters capturing the independent effects of origin, destination, and mobility, along with additional cell-specific parameters that represent heterogeneity or interactions among these dimensions. We then introduce a reparameterized version of the conventional model that explicitly distinguishes linear from nonlinear effects. This reparameterization facilitates a deeper understanding of the inherent limitations in identifying mobility effects while also laying the groundwork for the various approaches to analyzing mobility effects we discuss in subsequent sections.

In the conventional mobility effects literature, researchers pursue the identification of unique origin, destination, and mobility effects despite the mathematical dependency among these dimensions. While not explicitly articulated, this pursuit implies a conceptual distinction between observed positions on a mobility table, namely, origin, destination, and mobility, and the underlying causal mechanisms they represent. That is, although destination ( $D$ ) is mathematically defined as the sum of origin ( $O$ ) and mobility ( $M$ ), the bundles of causal mechanisms they proxy for, which we denote as  $O^*$ ,  $D^*$ , and  $M^*$ , are theoretically distinct and capable of varying independently. Origin effects ( $O^*$ ) might represent parental economic resources, cultural socialization, or educational guidance; destination effects ( $D^*$ ) could capture workplace authority relations, professional network benefits, or class-based consumption opportunities; and mobility effects ( $M^*$ ) might reflect distinct processes such as status anxiety, reference group changes, or psychological adaptation to class transitions. This distinction supplies the rationale for attempting to identify unique effects of origin, destination, and mobility, notwithstanding their deterministic mathematical relationship. More formally, let  $O^*$ ,  $D^*$ , and  $M^*$  denote underlying bundles of causal mechanisms that are allowed to vary freely from each other such that  $D^* \neq O^* + M^*$ . Mobility effects analysis, as commonly used in the literature, can generally be understood as any analysis using functions of the form  $Y = f(O^*, D^*, M^*) + \epsilon$ , where  $\epsilon$  is a normally distributed error term with a mean of zero. However, because  $O^*$ ,  $D^*$ , and  $M^*$  are typically unobserved, the observed dimensions of the mobility table,  $O$ ,  $D$ , and  $M$ , which have the natural relationship  $D = O + M$ , are substituted for the underlying causal variables  $O^*$ ,  $D^*$ , and  $M^*$  (cf. Bijlsma et al. 2017: 722-724; Clogg 1982; Heckman and Robb 1985). As we show in later sections, it is only under very strong assumptions that one can extract unique “effects” using a conventional analysis of mobility effects.

More specifically, suppose we have data collected on individuals indexed from  $r = 1, \dots, R$ , where  $R$  is the total number of respondents. Additionally, suppose we have data collected on the underlying causal factors  $O^*$ ,  $D^*$ ,  $M^*$ , which are coded as categorical variables with levels indexed by  $l = 1, \dots, L$ ,  $p = 1, \dots, P$ , and  $n = 1, \dots, N$ , respectively.<sup>1</sup> The mobility effects model can thus be specified as follows:

$$Y = f(O^*, D^*, M^*) + \epsilon = \mu^* + \alpha_l^* + \beta_p^* + \gamma_n^* + \eta_{lpn}^* + \xi_{rlpn}^*, \quad (B.1)$$

where  $\mu^*$  is the intercept (or overall mean);  $\alpha_l^*$ ,  $\beta_p^*$ ,  $\gamma_n^*$  denote the  $l$ th,  $p$ th,  $n$ th levels of the underlying causal factors for origin, destination, and mobility, respectively;  $\eta_{lpn}^*$  is an additional (orthogonal) term denoting interactions among the underlying factors; and  $\xi_{rlpn}^*$  is an individual-level, normally distributed error term with a mean of zero. If one somehow had access to these underlying factors, then, under standard assumptions of consistency and no interference between units, positivity and overlap, and conditional ignorability, we could use Equation B.1 to estimate  $\mathbb{E}[Y^{o^* d^* m^*}]$ ,

---

<sup>1</sup>For simplicity, and without loss of generality, we will assume that the origin and destination categories are of equal width.

the expected value of the counterfactual outcome if we were to set  $O^*$  to some value  $o^*$ ,  $D^*$  to some value  $d^*$ , and  $M^*$  to some value  $m^*$ , each of which, as noted above, are allowed to freely vary. The estimand here is the difference in expected outcomes for two hypothetical individuals who share the same origin  $o^*$  and the same destination  $d^*$  but differ in their mobility factor  $m^*$ . Formally, one can write this “mobility effect” as:

$$\mathbb{E}[Y^{(o^*, d^*, m^*)}] - \mathbb{E}[Y^{(o^*, d^*, m'^*)}],$$

where  $o^*$  and  $d^*$  are held fixed at the same levels in both expectations, and  $m^* \neq m'^*$  represents two different possible mobility “treatments.” Under the usual assumptions (consistency, no interference, positivity, ignorability, as well as the assumption that the causal directions are appropriately specified), this difference captures how much the outcome  $Y$  would change if origin and destination were fixed to the same values but mobility status were fixed to different values. This is the estimand that the rapidly growing literature on social mobility effects, which overwhelmingly uses the DRM (see Online Appendix A), seeks to identify.

In practice, one typically does not have access to the underlying bundles of causal mechanisms in Equation B.1. Instead of treating them as dimensions of observed positionality on a mobility table,  $O$ ,  $D$ ,  $M$ , as noted above, are used as proxies for  $O^*$ ,  $D^*$ , and  $M^*$ .<sup>2</sup> Specifically, suppose we have a set of categorical variables for  $i = 1, \dots, I$  origin groups,  $j = 1, \dots, J$  destination groups, and  $k = 1, \dots, K$  mobility groups, where  $k = j - i + I$  and  $K = I + J - 1$ . The mobility effects model using origin, destination, and mobility as proxies can accordingly be specified using what we call the *Classical Origin-Destination-Mobility (C-ODM) model*:

$$Y = f(O^*, D^*, M^*) + \epsilon \rightarrow f(O, D, M) + \epsilon = \mu + \alpha_i + \beta_j + \gamma_k + \eta_{ijk} + \xi_{rjik}, \quad (\text{B.2})$$

where  $\mu$  is the intercept (or overall mean);  $\alpha_i$ ,  $\beta_j$ ,  $\gamma_k$  denote the  $i$ th,  $j$ th,  $k$ th observed levels of origin, destination, and mobility, respectively;  $\eta_{ijk}$  is an additional (orthogonal) term denoting interactions; and  $\xi_{rjik}$  is an individual-level, normally-distributed error term with a mean of zero. To reiterate, Equation B.2 is based on the implicit assumption that  $O$ ,  $D$ , and  $M$  (and their respective indices) can be treated as surrogates for  $O^*$ ,  $D^*$ , and  $M^*$  (and their respective indices). To simplify the exposition, we will accordingly refer to  $\alpha_i$ ,  $\beta_j$ , and  $\gamma_k$  as the “true” origin, destination, and mobility effects, but the reader should keep in mind that this is shorthand for referring to  $\alpha_i^*$ ,  $\beta_j^*$ ,  $\gamma_k^*$  (for a similar point, see Fosse and Winship 2019a).

Unfortunately, the basic mobility effects model outlined in Equation B.2 suffers from a fundamental identification problem that goes beyond the identification problem common to all linear models using categorical variables as inputs.<sup>3</sup> This problem was vividly illustrated by the sociologist

<sup>2</sup>An alternative strategy is to shift away from modeling general “effects” and instead focus on examining the effects of specific variables that are thought to capture particular origin-, destination-, or mobility-related processes. For example, rather than attempting to model an omnibus “mobility effect” on, say, voting behavior or political preferences (e.g., Clifford and Heath 1993; De Graaf et al. 1995), one might examine how specific mobility-related events, such as a spell of unemployment or changes in job tasks, affect the likelihood of voting for a particular political party (e.g., Turner and Ryan 2023; Wiertz and Rodon 2021). However, because this approach focuses on understanding the effects of particular mechanisms rather than global origin, destination, and mobility effects, it may be seen as a shift away from mobility effects analysis as it has been traditionally understood in the literature.

<sup>3</sup>The common identification problem is that, with an intercept in the model, there is one more level than can be estimated for the origin, destination, and mobility effect. Although common, interpretation errors can ensue: For example, in a related literature on APC models, it has been shown that for some estimators seemingly trivial changes in coding schemes, such as the level used as the reference category, can generate dramatically different results (Fosse and Winship 2018). In the discussion that follows, we will assume that sum-to-zero constraints are applied, such that

Hubert Blalock (1966: 53), who posed the following thought experiment: “Suppose an unscrupulous demon were to perform certain legitimate mathematical manipulations, presenting to us some new equations with different numerical values for the slopes. Could we ever discover the hoax?” Unfortunately, with respect to the analysis of mobility effects, the answer is in the negative: the linear effects are not identified in conventional mobility models, and estimates are compatible with an infinite range of possible values (Blalock 1966).<sup>4</sup> Intuitively, this is simply because there is not enough information to identify all three linear effects from the data alone (for a related discussion and proofs, see Fosse and Winship 2018).

It is worth emphasizing that the identification challenge in mobility research shares important similarities with the classic age-period-cohort (APC) problem, in which Age + Cohort = Period creates a linear dependency that cannot be resolved with data alone. However, APC analyses typically rely on a Lexis table indexing temporally-based dimensions, namely, age, historical period, and birth cohort, which serve as proxies for life-cycle, generational, and period-based causal processes (e.g., see Fosse and Winship 2019b). By contrast, mobility research is grounded in structural dimensions, namely, class origin, class destination, and social mobility, that proxy class- and movement-based causal processes. These different substantive applications have informed the history of model development in both domains. Despite these distinct substantive interpretations, however, both APC and origin-destination-mobility models confront the same underidentification challenge: neither set of “effects” can be uniquely disentangled without additional, often strong, assumptions.

An alternative formulation of the C-ODM model (see Equation B.2) helps clarify the nature of the identification problem. By orthogonalizing the linear from the nonlinear terms, we can specify what we call the *Linearized Origin-Destination-Mobility (L-ODM) model*:

$$\mu_{rijk} = \mu + \alpha(i - i^*) + \beta(j - j^*) + \gamma(k - k^*) + \tilde{\alpha}_i + \tilde{\beta}_j + \tilde{\gamma}_k + \eta_{ijk} + \xi_{rijk} \quad (\text{B.3})$$

where the asterisks denote midpoint or referent indices  $i^* = (I + 1)/2$ ,  $j^* = (J + 1)/2$ , and  $k^* = (K + 1)/2$ ;  $\alpha$ ,  $\beta$ , and  $\gamma$  denote the linear effects of origin, destination, and mobility, respectively; and  $\tilde{\alpha}$ ,  $\tilde{\beta}$ , and  $\tilde{\gamma}$  represent the origin, destination, and mobility nonlinear effects, respectively;  $\eta_{ijk}$  is, as before, an additional (orthogonal) term denoting interactions; and  $\xi_{rijk}$  is a normally-distributed individual-level error term with a mean of zero. To identify the levels of the parameters given the inclusion of the intercept, sum-to-zero constraints are applied to the linear and nonlinear parameters.

The C-ODM and L-ODM models are equivalent representations of class data grouped by origin, destination, and mobility in the sense that a model fitted using either specification will result in the same predicted values of the outcome.<sup>5</sup> However, the L-ODM model has a significant advantage over the C-ODM model. Due to the linear dependence among origin, destination, and mobility, as well as the fact that origin, destination, and mobility parameters combine slopes with deviations, even after applying sum-to-zero constraints, in general no parameters are identified in the C-ODM model other than the overall mean (cf. Fosse and Winship 2018).<sup>6</sup> By contrast, after applying the

---

<sup>4</sup> $\sum_{i=1}^I \alpha_i = \sum_{j=1}^J \beta_j = \sum_{k=1}^K \gamma_k = 0$ , with the last category of the origin, destination, and mobility variables dropped.

<sup>5</sup>This does not mean, however, that, based on substantive or theoretical knowledge, one would necessarily believe that all values are equally valid (e.g., see Fosse and Winship 2019b).

<sup>6</sup>More technically and precisely, the two models are equivalent in that they span the same linear subspace of the data.

<sup>6</sup>However, if  $I$ ,  $J$ , and/or  $K$  are odd, then under conventional “normalization” assumptions the corresponding mean parameters  $\alpha_{(I+1)/2}$ ,  $\beta_{(J+1)/2}$ , and/or  $\gamma_{(K+1)/2}$  will be identified (see Smith 2021 for a similar point).

sum-to-zero constraints, only the three linear effects in the L-ODM model remain unidentified.<sup>7</sup> This greatly simplifies the nature of the identification problem and, as we show later, allows one to use graphical tools for visualizing and partially identifying the parameters of a mobility effects model. Moreover, as we demonstrate in the next section, the L-ODM can be used to clarify the assumptions underlying the current wave of studies on mobility effects.

---

<sup>7</sup>We elaborate on this property later when we discuss the bounding approach to mobility effects models.

## Online Appendix C: Further Simulations of the Bias in the DRM

Here we present results from simulations with various values of the nonlinear effects for origin and destination. Note that in these simulations we assume that the proportionality constraint holds for the nonlinear origin and destination effects, but not necessarily for their respective linear effects. In all simulations we fix the true linear effects at the same magnitude and sign, namely,  $\alpha = \beta = \gamma = 0.250$ . We present the nonlinear effects in terms of quadratic (second-order) components, but similar results could be obtained using alternative representations of the nonlinearities (e.g., deviations from the linear effects). To clarify the sensitivity of the DRM to the nonlinear effects, in all simulations we keep the true origin, destination, and mobility linear effects fixed at 0.250. The top half of Table C.1 displays the results across different values of the quadratic origin parameter, while the bottom shows the results across different values of the quadratic destination parameter. As with the previous tables of simulations, the shaded rows denote those specific simulations in which the data generating parameters happen to be recovered by the DRM.

Table C.1: Sensitivity of Estimated Mobility Linear Effect  
to Values of True Origin and Destination Nonlinear Effects

|                      | True DGP   |           |          | DRM Estimates  |               |                | Bias ( $\hat{\gamma} - \gamma$ ) |   |                                  |   |                         |
|----------------------|------------|-----------|----------|----------------|---------------|----------------|----------------------------------|---|----------------------------------|---|-------------------------|
|                      | $\alpha^2$ | $\beta^2$ | $\gamma$ | $\hat{\alpha}$ | $\hat{\beta}$ | $\hat{\gamma}$ | $(\beta)(\hat{w}_o)$             | – | $(\alpha)(\hat{w}_d)$            | = | $\hat{\gamma} - \gamma$ |
| Varying $\alpha^2$ : | 0.000      | 0.050     | 0.250    | 0.000          | 0.500         | 0.000          | (0.250)( $\frac{0.000}{0.050}$ ) | – | (0.250)( $\frac{0.050}{0.050}$ ) | = | -0.250                  |
|                      | 0.050      | 0.050     | 0.250    | 0.250          | 0.250         | 0.250          | (0.250)( $\frac{0.050}{0.100}$ ) | – | (0.250)( $\frac{0.050}{0.100}$ ) | = | 0.000                   |
|                      | 0.100      | 0.050     | 0.250    | 0.333          | 0.167         | 0.333          | (0.250)( $\frac{0.100}{0.150}$ ) | – | (0.250)( $\frac{0.050}{0.150}$ ) | = | 0.083                   |
|                      | 0.250      | 0.050     | 0.250    | 0.417          | 0.083         | 0.417          | (0.250)( $\frac{0.250}{0.300}$ ) | – | (0.250)( $\frac{0.050}{0.300}$ ) | = | 0.167                   |
|                      | 0.500      | 0.050     | 0.250    | 0.455          | 0.046         | 0.455          | (0.250)( $\frac{0.500}{0.550}$ ) | – | (0.250)( $\frac{0.050}{0.550}$ ) | = | 0.205                   |
|                      | 1.000      | 0.050     | 0.250    | 0.476          | 0.024         | 0.476          | (0.250)( $\frac{1.000}{1.050}$ ) | – | (0.250)( $\frac{0.050}{1.050}$ ) | = | 0.226                   |
| Varying $\beta^2$ :  | 0.050      | 0.000     | 0.250    | 0.500          | 0.000         | 0.500          | (0.250)( $\frac{0.050}{0.050}$ ) | – | (0.250)( $\frac{0.000}{0.050}$ ) | = | 0.250                   |
|                      | 0.050      | 0.050     | 0.250    | 0.250          | 0.250         | 0.250          | (0.250)( $\frac{0.050}{0.100}$ ) | – | (0.250)( $\frac{0.050}{0.100}$ ) | = | 0.000                   |
|                      | 0.050      | 0.100     | 0.250    | 0.167          | 0.333         | 0.167          | (0.250)( $\frac{0.050}{0.150}$ ) | – | (0.250)( $\frac{0.100}{0.150}$ ) | = | -0.083                  |
|                      | 0.050      | 0.250     | 0.250    | 0.083          | 0.417         | 0.083          | (0.250)( $\frac{0.050}{0.300}$ ) | – | (0.250)( $\frac{0.250}{0.300}$ ) | = | -0.167                  |
|                      | 0.050      | 0.500     | 0.250    | 0.046          | 0.455         | 0.046          | (0.250)( $\frac{0.050}{0.550}$ ) | – | (0.250)( $\frac{0.500}{0.550}$ ) | = | -0.205                  |
|                      | 0.050      | 1.000     | 0.250    | 0.024          | 0.476         | 0.024          | (0.250)( $\frac{0.050}{1.050}$ ) | – | (0.250)( $\frac{1.000}{1.050}$ ) | = | -0.226                  |

*Notes:* Number of origin and destination groups is set at  $I = 5$  and  $J = 5$ , respectively, for all simulations. Sample size for each simulation is  $R = 5,958$ . For all simulations the true linear effects are fixed at  $\alpha = \beta = \gamma = 0.250$  and the true nonlinear effects other than  $\alpha^2$  and  $\beta^2$  are fixed at zero. For simplicity, and without loss of generality, we assume no random error. Shaded rows denote simulations in which the DRM recovers the true mobility linear effect ( $\hat{\gamma} = \gamma$ ). The bias arises due to the fact that the underlying origin and destination linear effects do not obey the proportionality constraints of the estimated weights, which are a function of the underlying nonlinear effects. For example, in the top row the estimated weights for origin and destination are  $\hat{w}_o = 0.000$  and  $\hat{w}_d = 1.000$ , respectively. Yet the actual weights needed to recover the true origin and destination effects are  $w_o = 0.500$  and  $w_d = 0.500$ , respectively.

## Online Appendix D: Additional Complications for Point-Identified or Partially-Identified Mobility Effects

So far little has been stated about the meaning of a mobility “effect.” In this appendix we outline the conceptualization of a mobility effect implied by the conventional mobility effects literature, outlining a number of challenges.

### *Graphical Causal Models*

Figure D.1 presents the basic setup of a mobility effects model in terms of directed acyclic graphs (DAGs). As is common in the sociological literature, we treat these DAGs as the graphical embodiment of Pearl’s (2009) nonparametric structural equation models (NPSEMs), using them to explicitly encode the underlying causal structure among the relevant variables. Panel (a) shows the graphical model for the causal effects of the origin ( $O^*$ ), destination ( $D^*$ ), and mobility ( $M^*$ ) underlying factors on an outcome ( $Y$ ) along with a background variable ( $X$ ).<sup>8</sup> Filled circles denote observed variables while hollow circles denote unobserved variables. Note that, because the causal factors are unobserved, they are denoted with hollow circles. As well, for simplicity of presentation we have omitted idiosyncratic causes that affect the three underlying, unobserved factors ( $U_{O^*}$ ,  $U_{D^*}$ ,  $U_{M^*}$ ) and the outcome ( $U_Y$ ).

In a conventional mobility effects analysis, the observed variables  $O$ ,  $D$ , and  $M$ , which have the natural relationship  $D := O + M$  (where  $:=$  means “is defined as”), are substituted for the underlying causal variables  $O^*$ ,  $D^*$ , and  $M^*$ .<sup>9</sup> This scenario is shown in panel (b) of Figure D.1. The double lines indicate the linear dependency among the dimensions. Note that these variables, unlike  $O^*$ ,  $D^*$ , and  $M^*$ , are observed, as indicated by the solid points. As well, the observed variables  $O$ ,  $D$ , and  $M$  are not affected by idiosyncratic causes, as they are deterministically related dimensions of the mobility table.

As we have discussed in previous sections, the scenario in Figure D.1(b) is problematic because of the linear dependence among origin, destination, and mobility. Even assuming that the underlying, unobserved factors are additive, with minimal interactions,<sup>10</sup> there is still not enough information to uniquely estimate all three causal effects. In operational terms, this means that we can only condition on two of the three variables (or, more precisely, their linear components). This is clearly a problem, as the graphical model in Figure D.1 shows that estimating just two of the three causal effects will lead to biased estimates.

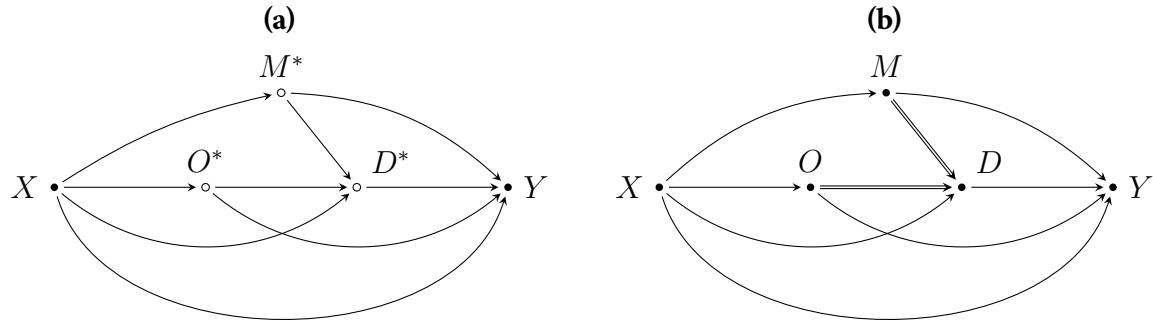
For the sake of the present discussion, however, let us assume that we have somehow obtained the underlying causal factors  $O^*$ ,  $D^*$ , and  $M^*$ . Suppose further that we are somehow able to obtain estimates that correspond to causal graph in Figure D.1(a). Even in such an idealized scenario, serious problems remain in interpreting the estimates of these effects. We outline four such problems below. It is important to understand that these issues arise in all models of mobility effects, and add a further layer of complexity to identification and estimation.

<sup>8</sup>As outlined previously, in conventional models of mobility effects, origin, destination, and mobility are implicitly treated as surrogates for unobserved factors that actually generate an outcome of interest. Again, let  $O^*$ ,  $D^*$ , and  $M^*$  denote underlying causal factors that are allowed to freely vary from each other such that  $D^*$  need not equal  $O^* + M^*$ .

<sup>9</sup>More specifically, for a mobility table with  $i = 1, \dots, I$  origin groups,  $j = 1, \dots, J$  destination groups, and  $k = 1, \dots, K$  mobility groups, it is the case that  $j = i + k - I$  and  $K = I + J - 1$ .

<sup>10</sup>It is important to note that saying that  $O^*$ ,  $D^*$ , and  $M^*$  are additive is not the same as saying that  $O$ ,  $D$ , and  $M$  are additive. The reason is that the unobserved factors lie on a three-dimensional tensor, while the observed dimensions lie on a two-dimensional mobility table. In the two-dimensional mobility table, the nonlinearities in any one of the dimensions will appear “interactive” with respect to the other two dimensions. For example, the class destination nonlinearities will appear at different mobility levels for different class origin groups.

Figure D.1: Graphical Models of Origin, Destination, and Mobility Effects



Notes: Panel (a) shows the graphical model for the causal effects of the origin ( $O^*$ ), destination ( $D^*$ ), and mobility ( $M^*$ ) underlying, unobserved factors on an outcome ( $Y$ ) along with a background variable ( $X$ ). Filled circles denote observed variables while hollow circles denote unobserved variables. Idiosyncratic causes that affect the three underlying factors ( $U_{O^*}$ ,  $U_{D^*}$ ,  $U_{M^*}$ ) and the outcome ( $U_Y$ ) are omitted for simplicity of presentation. Panel (b) shows the graphical model with the observed origin ( $O$ ), destination ( $D$ ), and mobility ( $M$ ) dimensions used as proxies for the underlying, unobserved causal factors. Double lines indicate the linear dependency among the dimensions. Here  $O$ ,  $D$ , and  $M$  are deterministic indices, so we omit idiosyncratic causes for them in this schematic.

### Parallel-World Counterfactuals

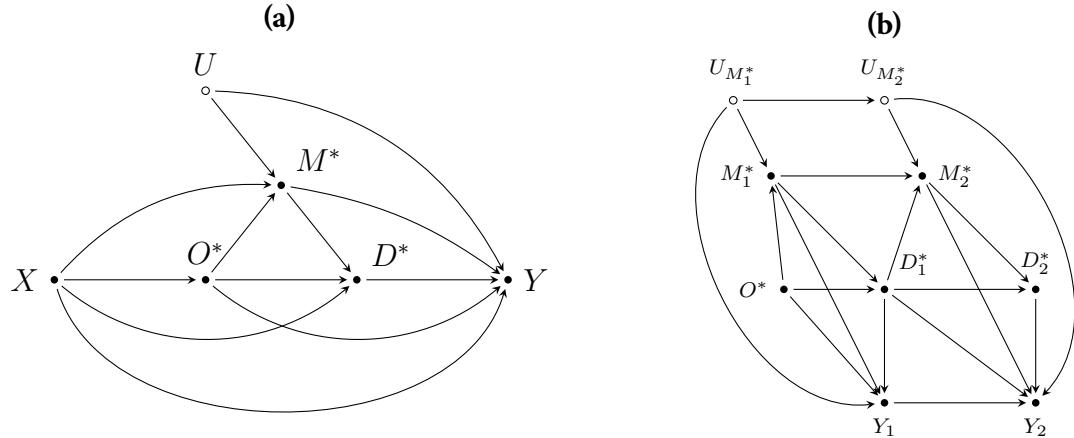
In the context of mobility effects models, counterfactuals can be defined in terms of intervening to fix (or set) some values of underlying origin, destination, and mobility factors for an individual. We use the counterfactual notation  $Y^{o^*, d^*, m^*}$ , where superscripts index hypothetical interventions on the causal factors  $O^*$  (origin),  $D^*$  (destination), and  $M^*$  (mobility). We could thus define, for a particular individual, a counterfactual outcome as  $Y^{o^*=\text{low}, d^*=\text{high}, m^*=\text{down}}$ , where low, high, and down refer to bundles of causal processes. In this case, the individual is fixed to values of the underlying mechanisms that imply upward mobility, while also being fixed to mechanisms that imply downward mobility. This is not intrinsically problematic, as various estimated causal effects, such as natural direct and indirect effects, invoke parallel-world counterfactuals. It does mean, however, that there is no obvious way for a real-world intervention, such as a randomized experiment, to generate the expected value of this counterfactual for a given population.<sup>11</sup>

### The Consistency Assumption

Suppose we believe that we have identified a causal effect for mobility. To endow this estimate with a formal counterfactual interpretation, one must invoke the assumption of consistency (Hernan 2016). Formally, given an individual respondent  $r$  is exposed to  $M_r = m$ , the counterfactual outcome  $Y_r^m$  is said to be “consistent” with the observed outcome  $Y_r$  if  $Y_r^m = Y_r$ . This assumption is violated if there are multiple ways to obtain a given level of exposure, thereby generating different counterfactuals. This assumption is particularly likely to be violated for composite variables that reflect multiple underlying features of the data. For example, the causal effect of cholesterol on health is “inconsistent” because the effect on health is very different depending on whether or not one intervenes to raise cholesterol by increasing HDL (“good” cholesterol) versus LDL (“bad” cholesterol). The practical advice is to use variables that correspond to narrowly defined exposures,

<sup>11</sup>Furthermore, as with the literature on natural direct and indirect effects, which has drifted toward so-called “interventional analogues” of mediator effects (Vansteelandt and Daniel 2017), it is unclear whether such parallel-world counterfactuals are actually of interest to applied researchers.

Figure D.2: Social Mobility as a Confounder



Notes: Panel (a) shows the underlying graphical model, which now includes a path between  $O^*$  and  $M^*$  as well as an additional unobserved causal variable  $U$ . It is assumed that the underlying causal variables  $O^*$ ,  $D^*$ , and  $M^*$  are all observed. Because  $M^*$  lies on the  $O^* \rightarrow Y$  path and, with respect to  $O^*$  and the unobserved variable  $U$ , is a collider, conditioning on  $M^*$  using conventional techniques biases estimation by (1) blocking part of the  $O^* \rightarrow Y$  effect and (2) opening the backdoor path  $O^* \rightarrow M^* \leftarrow U \rightarrow Y$ . Panel (b) shows the graphical model if there are multiple destination and mobility causal factors measured at subsequent time periods ( $D_1^*$ ,  $M_1^*$ ,  $D_2^*$ ,  $M_2^*$ ), with multiple outcomes ( $Y_1$ ,  $Y_2$ ) and multiple unobserved confounders ( $U_{M_1^*}$ ,  $U_{M_2^*}$ ). Similar issues arise in this more complicated setting.

with correspondingly well-defined counterfactuals.

Note, however, that this is a subjective decision that depends on one's expertise and tolerance for ambiguity. For example, Rehkopf et al. (2016) outline ways in which neighborhoods, income, and education can each be understood to violate the consistency assumption, despite widespread agreement in sociology and related fields that these are all causal variables. They consider education as a variable that violates the consistency assumption, inasmuch as it has an effect on the outcome via, for example, "improvements in knowledge and cognitive skills, credentials that are valued on the labor market, status improvements, and changes to the individual's social network (2016: 66)." By their logic, measures of social class and class mobility are clearly composite variables that reflect a variety of underlying mechanisms (e.g., Wright 2005) and thus lead to ill-defined, ambiguous counterfactuals. This suggests that, because  $O^*$ ,  $D^*$ , and  $M^*$  bundle heterogeneous mechanisms, the basic mobility effects approach should be replaced by a more targeted approach that focuses on more specific, well-defined causal mechanisms.

### Unobserved Confounding

To identify the causal effect of social mobility, we must assume that mobility is not confounded with the outcome. This implies conditioning on relevant background variables and avoiding conditioning on post-exposure confounders, which would block some of the effects of mobility. However, the assumption of no unobserved confounding is particularly thorny with respect to mobility effects models. This is closely related to the consistency assumption. Because these are omnibus factors representing multiple causal mechanisms and background variables, it is difficult to imagine which unobserved variables would confound the effect of mobility on a given outcome. Again, more narrowly defined exposures are helpful in figuring out what variables are potential confounders, but this will lead the researcher away from the analysis of mobility effects as they have been conventionally understood in the literature.

### *Mobility as a Confounder*

Finally, a fourth problem with models of mobility effects concerns the fact that social mobility itself is a confounding variable. A careful inspection of Figure D.1 reveals that we have assumed that the underlying origin variable has no causal effect on the underlying mobility variable. This is unrealistic in practice. Presumably, the bundle of causal factors for class origin affects not only those for class destination, but also mobility. This scenario is illustrated in Figure D.2(a), which now includes a path between  $O^*$  and  $M^*$  as well as an additional unobserved causal variable  $U$ . To reiterate, following the assumptions of our present discussion, it is assumed that the underlying causal variables  $O^*$ ,  $D^*$ , and  $M^*$  are all observed.

Suppose we want to identify the total causal effect of  $O^*$  on  $Y$ . Assuming we have observed the underlying variables in Figure D.2(a), conventional, naive adjustment techniques would introduce potential bias. Specifically, because  $M^*$  lies on the  $O^* \rightarrow Y$  path and, with respect to  $O^*$  and the unobserved variable  $U$ , is a collider, conditioning on  $M^*$  using conventional techniques biases estimation by (1) blocking part of the  $O^* \rightarrow Y$  effect and (2) opening the backdoor path  $O^* \rightarrow M^* \leftarrow U \rightarrow Y$ . The same issues extend to more complicated settings, such as that shown in Figure D.2(b), with multiple class destination and mobility variables, as well as multiple confounders.<sup>12</sup>

---

<sup>12</sup>Assuming one has observed factors for origin, destination, and mobility, then various methods for time-varying confounding could be used to estimate the effects, such as structural nested models (Vansteelandt and Joffe 2014), marginal structural models (Robins et al. 2000), or residualized regression models (Wodtke and Xiang 2020).

## Online Appendix E: Summarizing Variability on the Mobility Table

In this appendix we outline models for describing structural and dynamic inequalities in a mobility table. We first present three different models for summarizing variation in a mobility table based on re-indexing the L-ODM model by origin-destination, destination-mobility, and origin-mobility, respectively. We then show, using the logic of omitted variable bias and matrix algebra, how these models clarify what is actually estimated when fitting all three possible one-factor models and all three possible two-factor models. These results show that, in general, that for describing patterns of mobility either a model of the form  $Y = f(D)$  or  $Y = f(O, M)$  is to be preferred. Throughout this appendix we let  $i = 1, \dots, I$  index the origin groups,  $j = 1, \dots, J$  the destination groups, and  $k = 1, \dots, K$  the mobility groups, where  $k = j - i + I$  and  $K = I + J - 1$ . As well, we let  $r = 1, \dots, R$  index the respondents (i.e., individuals) in the data set.

### 1. Three Models for Describing Dynamic and Structural Inequality

As noted in the main text, instead of attempting to identify unique or “pure” effects, one can use the L-ODM model to identify structural and dynamic processes operating on a mobility table. The key insight is that we can project the three-dimensional (unidentified) L-ODM model onto a two-dimensional surface (i.e., a mobility table) by exploiting the fact that mobility, origin, and destination are linearly related. Because there are three different ways to index a mobility table (i.e., origin-mobility, origin-destination, destination-mobility), there are three distinctly different models for describing patterns on a mobility table.<sup>13</sup> We outline each of these models below. Although each model is indexed by two dimensions, because each model contains parameters for all three dimensions, we will refer to them as “three-factor” models.

The first model is based on taking the L-ODM model and re-specifying it as an origin-mobility model. Note that, given an origin-destination mobility table,  $j = i + k - I$  and  $J = K - I + 1$ . Substituting for  $j$  and  $J$  in the L-ODM model and rearranging terms leads to what we call the *Structural and Dynamic Inequality model* or the *SDI model* for short:

$$\mu_{r i j k} = f(O, M) = \mu + \Gamma_1(i - i^*) + \Gamma_2(k - k^*) + \tilde{\alpha}_i + \tilde{\beta}_{[i+k-I]} + \tilde{\gamma}_k + \eta_{i[i+k-I]k} + \xi_{r i [i+k-I]k}, \quad (E.1)$$

where  $\Gamma_1 = \alpha + \beta$  and  $\Gamma_2 = \gamma + \beta$ , or the social structure (ST) slope and the social mobility (SM) slope, respectively. As a result of the substitution of the sum of the origin and mobility indices for the destination indices (that is,  $j = i + k - I$  and  $J = K - I + 1$ ), the outcome is simply a function of origin, indexed by  $i$ , with corresponding parameters representing structural inequalities, and mobility, indexed by  $k$ , with corresponding parameters representing dynamic inequalities. This model is identified (i.e., the design matrix is of full rank) as it does not contain a separate linear term for destination, which is instead combined with the origin and mobility linear terms, respectively.

The second model is based on expressing the parameters of the L-ODM model in terms of origin and destination. Note that, given an origin-destination mobility table,  $k = j - i + I$  and  $K = I + J - 1$ . Substituting for  $k$  and  $K$  in the L-ODM model and rearranging terms results in what we call the *Intra-Destination Differences and Structural Inequality model* or, for short, the *Diff-SI model*:

$$\mu_{r i j k} = f(O, D) = \mu + (\Gamma_1 - \Gamma_2)(i - i^*) + \Gamma_2(j - j^*) + \tilde{\alpha}_i + \tilde{\beta}_j + \tilde{\gamma}_{j-i+I} + \eta_{ij[j-i+I]} + \xi_{r i j [j-i+I]}, \quad (E.2)$$

where  $\Gamma_1 - \Gamma_2 = (\alpha + \beta) - (\gamma + \beta) = \alpha - \gamma$  and  $\Gamma_2 = \gamma + \beta$ . The difference  $\Gamma_1 - \Gamma_2$  in Equation E.2 is a slope of differences within the class destination, while  $\Gamma_2$  is simply the total realized mobility slope from the SDI model, but indexed by destination ( $j = 1, \dots, J$ ) instead of

<sup>13</sup>Note that these models take the general form of  $Y = f(O, D)$ ,  $Y = f(D, M)$ , and  $Y = f(O, M)$ .

by mobility levels ( $k = 1, \dots, K$ ). Similar to the SDI model, the Diff-SI model is identified because it does not contain a unique linear term for social mobility, which is instead absorbed into the origin and destination linear terms.

Finally, the third logically possible model entails expressing the parameters of the L-ODM model in terms of destination and mobility. Note that, given an origin-destination mobility table,  $i = j - k + I$  and  $I = K - J + 1$ . Substituting for  $i$  and  $I$  in the L-ODM model and rearranging terms results in what we call the *Dynamic Inequality and Intra-Destination Differences model* or, for short, the *DI-Diff model*:

$$\begin{aligned}\mu_{r_{ijk}} = f(D, M) = & \mu + \Gamma_1(j - j^*) + (\Gamma_2 - \Gamma_1)(k - k^*) + \tilde{\alpha}_{j-k+(K-J+1)} + \tilde{\beta}_j + \tilde{\gamma}_k \\ & + \eta_{[j-k+(K-J+1)]jk} + \xi_{r[j-k+(K-J+1)]jk},\end{aligned}\quad (\text{E.3})$$

where  $\Gamma_2 - \Gamma_1 = (\gamma + \beta) - (\alpha + \beta) = \gamma - \alpha$  and  $\Gamma_1 = \alpha + \beta$ . The difference  $\Gamma_2 - \Gamma_1$  in Equation E.3 is an overall slope of differences within destination classes, while  $\Gamma_1$  is simply the ST slope from the SDI model, but indexed by class destination ( $j = 1, \dots, J$ ) instead of class origin ( $i = 1, \dots, I$ ). Similar to the previous two models, the DI-Diff model is identified because it does not include a separate linear term for origin, which is instead absorbed into the destination and mobility linear terms.

All three models outlined above provide the same estimates of the intercept and the origin, destination, and mobility nonlinearities. However, unlike the SDI model, the slopes indexed by origin and mobility in Equations E.2 and E.3, respectively, are what can be deemed “synthetic,” conflating structural with dynamic inequalities. This is because these slopes are estimated while conditioning on the class destination linear component, and, as such, represent heterogeneous origin-mobility comparisons within a given class destination. In fact, it is only under very specific circumstances that Equations E.2 and E.3 will give unbiased estimates of structural and dynamic inequalities, respectively. Specifically, the Diff-SI model will produce the correct estimate of  $\Gamma_1$  only if  $\Gamma_2$  happens to be zero, while the DI-Diff model will give the correct estimate of  $\Gamma_2$  only if  $\Gamma_1$  happens to be zero. That is,  $\Gamma_1 - \Gamma_2 = \Gamma_1$  only if  $\Gamma_2 = 0$ , and  $\Gamma_2 - \Gamma_1 = \Gamma_2$  only if  $\Gamma_1 = 0$ . Thus, for the purposes directly estimating structural and dynamic inequalities, the SDI model is strongly preferred over the Diff-SI and DI-Diff models.

In the following sections, we examine the properties of all six logically possible one-factor and two-factor class models for a given mobility table or, equivalently, data with class origin, destination, and mobility variables. These models are listed in Table E.1. For each one- or two-factor model, we use a corresponding three-factor model to clarify exactly what is being estimated. For example, as shown in the first row of Table E.1, to understand the properties of the marginal destination model, which is a one-factor model, we use the SDI model. Similarly, to clarify the estimates of the two-factor origin-destination model (i.e., Duncan’s “square additive model”), we use the DI-Diff model. Note that we consider all of these models to be descriptive, such that these various models are different ways of summarizing aggregate-level variability on a mobility table without relying on information purely external to the data.

Table E.1: Comparison of Class Models for a Mobility Table

| Reference Model     | One-Factor Model           | Two-Factor Model            |
|---------------------|----------------------------|-----------------------------|
| SDI model (E.1)     | marginal destination (E.6) | origin-mobility (E.14)      |
| Diff-SI model (E.2) | marginal mobility (E.8)    | origin-destination (E.10)   |
| DI-Diff model (E.3) | marginal origin (E.4)      | destination-mobility (E.12) |

*Notes:* This table outlines the various one- and two-factor models analyzed based on a corresponding reference model using matrix algebra and the logic of omitted variable bias. For example, the parameters of the marginal destination model and origin-mobility model are interpreted using the SDI model. Equation numbers are in parentheses. Note that these models are all treated as descriptive, and are thus distinct from a conventional mobility effects model, which has the form of  $f(O^*, D^*, M^*)$ , where  $O^*$ ,  $D^*$ , and  $M^*$  are unobserved causal factors proxied by  $O$ ,  $D$ , and  $M$ .

## 2. Interpreting the Parameters of One-Factor Class Models

In this section, we outline the three logically possible one-factor models (based on either origin, destination, or mobility) that can be used to describe the main patterns on a mobility table. For each one-factor model, we outline the relationship between the model's parameters and those from a corresponding model that includes all three factors (see Equations E.1, E.2, and E.3). To avoid confusion with corresponding terms in the three-factor models outlined previously, we use asterisks to denote the parameters in the one-factor models. In general, among all three one-factor models, we recommend using only the marginal destination model, as the underlying slope estimated by this model can be straightforwardly interpreted as a weighted sum of the ST and SM slopes from the SDI model.

### i. Marginal Origin Model

The first logically possible one-factor model is the origin class mobility model, which has the following form:

$$\mu_{rjik} = f(O) = \mu^* + \alpha_i^* + \epsilon_{ri}^*, \quad (\text{E.4})$$

where  $\mu^*$  is the intercept;  $\alpha_i^*$  are parameters for class origin using sum-to-zero deviation (or “effect”) coding; and  $\epsilon_{ri}^*$  denotes individual-level error. Using the DI-Diff model as a reference (see Equation E.3), the class origin model outlined in Equation E.4 can be shown to be equivalent to the following:

$$\begin{aligned} \mu_{rjik} &= (\underbrace{\mu + \phi_\mu}_{\mu^*}) + (\underbrace{(\alpha_M + \phi_{\alpha_M})(i - i^*) + (\tilde{\alpha}_i + \phi_{\tilde{\alpha}_i})}_{\alpha_i^*}) + (\underbrace{\epsilon_{rjik} + \eta_{ijk} + \nu_{ijk}}_{\epsilon_{ri}^*}) \quad \text{and} \\ \alpha_M &= (\Gamma_1 \omega_{(j,i)} + (\Gamma_2 - \Gamma_1) \omega_{(k,i)}), \end{aligned} \quad (\text{E.5})$$

where  $\mu$  is the intercept;  $\Gamma_1$  is the ST slope;  $\Gamma_2 - \Gamma_1 = \gamma - \alpha$  is the intra-destination slope;  $\alpha_M$  is the marginal origin slope;  $\omega_{(j,i)}$  is the relationship between the destination linear component and the origin linear component conditional on the intercept and origin nonlinear components;  $\omega_{(k,i)}$  is the relationship between the mobility linear component and the origin linear component conditional on the intercept and origin nonlinear components;<sup>14</sup>  $\tilde{\alpha}_i$  is the  $i$ th origin nonlinearity;  $\phi_\mu$ ,  $\phi_{\alpha_M}$  and  $\phi_{\tilde{\alpha}_i}$  are bias terms for the intercept, marginal origin slope, and the  $i$ th origin nonlinearity;  $\epsilon_{rjik}$  is individual-level error;  $\eta_{ijk}$  denotes unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes additional heterogeneity attributable to class destination and mobility. The terms in brackets below Equation

<sup>14</sup>Those in the upper class can only be downwardly mobile or stay the same, while those in the lower class can only be upwardly mobile or stay the same. Accordingly, the relationship between the mobility and origin linear components is in general negative, and thus one can write  $(\Gamma_2 - \Gamma_1)(-\omega_{(k,i)}) = (\Gamma_1 - \Gamma_2)\omega_{(k,i)}$  in Equation E.5.

E.5 denote the corresponding parameters from the marginal origin model presented in Equation E.4.

Several points are worth noting regarding Equation E.5. First, the marginal origin slope, or  $\alpha_M$ , underlying Equation E.4 is a weighted sum of the ST and the intra-destination slope, with weights given by the relationships between destination and mobility, respectively, with origin. As noted in the main text, the intra-destination slope compares heterogeneous class-mobility groups, conflating structural with dynamic inequalities. For example, within a “middle” destination class, comparing a “low” class group with a “high” class group is simultaneously comparing a group that is upwardly mobile with another that is downwardly mobile. Because the marginal origin slope is in part a function of the intra-destination slope, we generally do not recommend using estimates from the marginal origin model.<sup>15</sup> Second, when the SM slope is zero (i.e.,  $\Gamma_2 = 0$ ), then the marginal origin slope will only be a function of the ST slope. In other words, in an absence of any observed social mobility, the marginal origin model will reflect overall structural inequalities. It is in this restricted sense that the marginal origin model could be used.<sup>16</sup> Third, the intercept, marginal origin slope, and origin nonlinearities will all have some degree of bias due to the exclusion of destination and mobility nonlinearities from Equation E.4.<sup>17</sup> Finally, the error term of the marginal origin model will reflect not just individual-level error, but also unique cell-specific heterogeneity as well as additional heterogeneity attributable to class destination and mobility.

### *ii. Marginal Destination Model*

More commonly, researchers frequently use a model that, while including other covariates, only includes class destination, omitting class origin and mobility (e.g., Goldthorpe 1999). The marginal class destination model, arguably the dominant model in sociology and demography, has the following general form:

$$\mu_{rjk} = f(D) = \mu^* + \beta_j^* + \epsilon_{rj}^*, \quad (\text{E.6})$$

where  $\mu^*$  is the intercept;  $\beta_j^*$  are parameters for class destination using sum-to-zero deviation (or “effect”) coding; and  $\epsilon_{rj}^*$  denotes individual-level error. Using the SDI model as a reference (see Equation E.1), the class destination model outlined in Equation E.6 can be shown to be equivalent to the following:

$$\begin{aligned} \mu_{rjk} &= \underbrace{(\mu + \xi_\mu)}_{\mu^*} + \underbrace{(\beta_M + \xi_{\beta_M})(j - j^*) + (\tilde{\beta}_j + \xi_{\tilde{\beta}_j})}_{\beta_j^*} + \underbrace{(\epsilon_{rjk} + \eta_{ijk} + \nu_{ijk})}_{\epsilon_{rj}^*} \quad \text{and} \\ \beta_M &= (\Gamma_1 \omega_{(i,j)} + \Gamma_2 \omega_{(k,j)}), \end{aligned} \quad (\text{E.7})$$

where  $\mu$  is the intercept;  $\Gamma_1 = \alpha + \beta$  is the ST slope and  $\Gamma_2 = \gamma + \beta$  is the SM slope;  $\beta_M$  is the marginal destination slope;  $\omega_{(i,j)}$  is the relationship between origin linear component and the destination linear component conditional on the intercept and the destination nonlinear components;  $\omega_{(k,j)}$  is the relationship between the mobility linear component and the destination linear component conditional on the intercept and the destination nonlinear components;  $\tilde{\beta}_j$  is the  $j$ th destination nonlinearity;  $\xi_\mu$ ,  $\xi_{\beta_M}$  and  $\xi_{\tilde{\beta}_j}$  are bias terms for the intercept, marginal destination slope, and

<sup>15</sup>One is generally better off using a model of the form  $f(O, M)$ . For additional discussion on the merits of models of this general form, see the main text.

<sup>16</sup>Note that, with data organized by origin, destination, and mobility, one can test whether or not the SM slope is zero or not using, for example, the SDI model.

<sup>17</sup>However, because our goal is primarily to conduct a descriptive rather than causal analysis, bias is less of a concern than understanding what, exactly, is being described with a particular model.

$j$ th destination nonlinearity;  $\epsilon_{rjk}$  is individual-level error;  $\eta_{ijk}$  denotes unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes additional heterogeneity attributable to class origin and mobility. The terms in brackets below Equation E.7 denote the corresponding parameters from the marginal destination model presented in Equation E.6.

Several main points are particularly noteworthy regarding Equation E.7. First, the marginal destination slope is a weighted sum of the ST and SM slopes, where the weights are given by the relationships between class origin and mobility, respectively, with class destination. Intuitively, this reflects the fact that class destination is a function of both structural and mobility processes. Accordingly, as an overall index of social stratification, class destination is in general a useful and informative metric. Second, the intercept, marginal destination slope, and destination nonlinearities will all have some degree of bias due to the exclusion of origin and mobility nonlinearities from equation E.6. Finally, the error term of the marginal destination model will reflect not only individual-level error, but also unique cell-specific heterogeneity on the mobility table, as well as additional heterogeneity attributable to class origin and mobility.

### iii. Marginal Mobility Model

The third possible one-factor class model is the marginal class mobility model (e.g., see Chen et al. 2022), which has the following form:

$$\mu_{rjk} = f(M) = \mu^* + \gamma_k^* + \epsilon_{rk}^*, \quad (\text{E.8})$$

where  $\mu^*$  is the intercept;  $\gamma_k^*$  are parameters for class mobility using sum-to-zero deviation (or “effect” coding); and  $\epsilon_{rk}^*$  denotes individual-level error. Using the Diff-SI model as a reference (see Equation E.2), the mobility model outlined in Equation E.8 can be shown to be equivalent to the following:

$$\begin{aligned} \mu_{rjk} &= \underbrace{(\mu + \psi_\mu)}_{\mu^*} + \underbrace{(\gamma_M + \psi_{\gamma_M})(k - k^*) + (\tilde{\gamma}_k + \psi_{\tilde{\gamma}_k})}_{\gamma_k^*} + \underbrace{(\epsilon_{rjk} + \eta_{ijk} + \nu_{ijk})}_{\epsilon_{rk}^*} \quad \text{and} \\ \gamma_M &= ((\Gamma_1 - \Gamma_2)\omega_{(i,k)} + \Gamma_2\omega_{(j,k)}), \end{aligned} \quad (\text{E.9})$$

where  $\mu$  is the intercept;  $\Gamma_1 - \Gamma_2 = \alpha - \gamma$  is the intra-destination slope and  $\Gamma_2 = \gamma + \beta$  is the SM slope;  $\gamma_M$  is the marginal mobility slope;  $\omega_{(i,k)}$  is the relationship between origin linear component and the mobility linear component conditional on the intercept and mobility nonlinear components;<sup>18</sup>  $\omega_{(j,k)}$  is the relationship between the destination linear component and the mobility linear component conditional on the intercept and mobility nonlinear components;  $\tilde{\gamma}_k$  is the  $k$ th mobility nonlinearity;  $\psi_\mu$ ,  $\psi_{\gamma_M}$  and  $\psi_{\tilde{\gamma}_k}$  are bias terms for the intercept, marginal mobility slope, and  $k$ th mobility nonlinearity;  $\epsilon_{rjk}$  is individual-level error;  $\eta_{ijk}$  denotes unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes additional heterogeneity attributable to class origin and destination. The terms in brackets below Equation E.9 denote the corresponding parameters from the marginal mobility model presented in Equation E.8.

As with the class destination model, several points are worth noting regarding Equation E.9. First, the marginal mobility slope, or  $\gamma_M$ , underlying Equation E.8 is a weighted sum of the intra-destination slope and the SM slope, with weights given by the relationships between origin and destination, respectively, with mobility. Again, as noted when discussing the marginal origin model, the intra-destination slope compares heterogeneous class-mobility groups, conflating structural with dynamic inequalities. Similarly, because the marginal mobility slope is a function of the intra-destination slope, we generally do not recommend using estimates from the marginal mobility

<sup>18</sup>Similar to the corresponding weight in Equation E.5, the relationship between the origin and mobility linear components is generally negative, and thus one can write  $(\Gamma_1 - \Gamma_2)(-\omega_{(i,k)}) = (\Gamma_2 - \Gamma_1)\omega_{(i,k)}$  in Equation E.9.

model. Second, when the ST slope is zero (i.e.,  $\Gamma_1 = 0$ ), then the marginal mobility slope will only be a function of the SM slope. In other words, in an absence of any overall total social structural differences, the marginal mobility model will reflect the observed mobility patterns. It is in this restricted sense that the marginal mobility model could be used.<sup>19</sup> Third, as with the marginal destination model, the intercept, marginal mobility slope, and mobility nonlinearities will all have some degree of bias due to the exclusion of origin and destination nonlinearities from Equation E.8. Lastly, the error term of the marginal mobility model will capture not just individual-level error, but also unique cell-specific heterogeneity as well as additional heterogeneity attributable to class origin and destination.

### 3. Interpreting the Parameters of Two-Factor Class Models

In this section, we clarify the interpretation of the parameters from all three logically possible two-factor models (origin-destination, destination-mobility, origin-mobility). As with the one-factor models, we present each two-factor model and discuss the relationship between each model's parameters and those of a corresponding model that includes all three factors (see Equations E.1, E.2, and E.3). Again, to avoid confusion with corresponding terms in the three-factor models outlined earlier, we use asterisks to denote parameters from two-factor models. It should be emphasized that we treat these models as descriptive, not causal. In general, our analyses suggest that among the two-factor models, an origin-mobility model is preferable to an origin-destination or destination-mobility model. This is because the underlying linear terms of the origin-mobility model are the ST and SM slopes, which estimate structural and dynamic inequalities, whereas the other two models generate estimates of within-destination differences that compare heterogeneous origin-mobility groups.

#### i. Origin-Destination Model

The origin-destination model, also known as the “square additive model” (Hope 1971, 1975), has the following general form (cf. Duncan 1966: 94-95):

$$\mu_{rijk} = f(O, D) = \mu^* + \alpha_i^* + \beta_j^* + \eta_{ij}^* + \epsilon_{rij}^*, \quad (\text{E.10})$$

where  $\mu^*$  is the intercept;  $\alpha_i^*$  and  $\beta_j^*$  are parameters for origin and destination using sum-to-zero deviation (or “effect”) coding;  $\eta_{ij}^*$  denotes group-level heterogeneity terms;<sup>20</sup> and  $\epsilon_{rij}^*$  denotes individual-level error. Using the Diff-SI model (see Equation E.2), the origin-destination model outlined in Equation E.10 can be shown to be equivalent to the following:

---

<sup>19</sup>Note that, with data organized by origin, destination, and mobility, one can test whether or not the ST slope is zero or not using, for example, the SDI model.

<sup>20</sup>Following Duncan (1966: 94-95), we will treat the group-level heterogeneity terms for all of the two-factor models as orthogonal. These terms can be easily calculated as group-level residuals relative to a fully-saturated model. With respect to the origin-destination model, as an alternative one can specify all possible pairs of interactions between origin and destination. If the data are balanced such that there are an equal number of individual-level observations in each origin-destination cell, then, using sum-to-zero deviation coding or orthogonal polynomial coding, the residuals will be equivalent to specifying a full set of origin-destination interactions. The reason for this is that in such a setting the columns for the origin-destination interactions will be orthogonal to the main origin and destination columns.

$$\begin{aligned}
\mu_{r_{ijk}} = & \underbrace{(\mu + \psi_\mu)}_{\mu^*} + \underbrace{((\Gamma_1 - \Gamma_2) + \psi_{(\Gamma_1 - \Gamma_2)})(i - i^*) + (\tilde{\alpha}_i + \psi_{\tilde{\alpha}_i})}_{\alpha_i^*} \\
& + \underbrace{(\Gamma_2 + \psi_{\Gamma_2})(j - j^*) + (\tilde{\beta}_j + \psi_{\tilde{\beta}_j})}_{\beta_j^*} + \underbrace{(\eta_{ijk} + \nu_{ijk})}_{\eta_{ij}^*} + \underbrace{\epsilon_{r_{ijk}}}_{\epsilon_{r_{ij}}^*}, \tag{E.11}
\end{aligned}$$

where  $\mu$  is the intercept;  $\Gamma_1 - \Gamma_2 = \alpha - \gamma$  is a slope of intra-destination differences;  $\Gamma_2$  is the SM slope;  $\tilde{\alpha}_i$  is the  $i$ th origin nonlinearity;  $\tilde{\beta}_j$  is the  $j$ th destination nonlinearity;  $\psi_\mu$ ,  $\psi_{(\Gamma_1 - \Gamma_2)}$ ,  $\psi_{\Gamma_2}$ ,  $\psi_{\tilde{\alpha}_i}$ , and  $\psi_{\tilde{\beta}_j}$  are bias terms for the intercept, intra-destination slope, SM slope,  $i$ th origin nonlinearity, and  $j$ th destination nonlinearity;  $\eta_{ijk}$  denotes terms for unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes terms for unique mobility-attributed heterogeneity; and  $\epsilon_{r_{ijk}}$  is individual-level error. The terms in brackets below Equation E.11 denote the corresponding parameters from the origin-destination model presented in Equation E.10.

Three main points stand out from Equation E.11. First, the intercept, origin, and destination parameters will all have some degree of bias due to the exclusion of the mobility nonlinear components from the origin-destination model.<sup>21</sup> Second, assuming that there is no bias due to the exclusion of the mobility nonlinearities, either because the mobility nonlinearities are zero or the mobility variables are unrelated to the variables for the intercept, origin, and destination terms (i.e., the included variables), then the underlying origin and destination slopes of the origin-destination model will equal those from the Diff-SI model. In other words, the origin-destination model will generate a slope of intra-destination differences. For this reason we do not generally recommend using the origin-destination model without extreme care in the interpretation of the origin parameters in Equation E.10. Finally, the group-level heterogeneity terms  $\eta_{ij}^*$  from the origin-destination model equal the sum of the unique cell-specific heterogeneity terms from the Diff-SI model,  $\eta_{ijk}$ , and the unique mobility-attributed heterogeneity terms  $\nu_{ijk}$ . The mobility-attributed heterogeneity terms are simply the predicted values from the parameters for the mobility nonlinear components (i.e., the excluded variables) using that part of the mobility variables that is unassociated with the variables for the intercept, origin, and destination terms (i.e., the included variables).

## ii. Destination-Mobility Model

The second logically possible two-factor model is the destination-mobility model, which has the following general form:

$$\mu_{r_{ijk}} = \mu^* + \beta_j^* + \gamma_k^* + \eta_{jk}^* + \epsilon_{r_{jk}}^*, \tag{E.12}$$

where  $\mu^*$  is the intercept;  $\beta_j^*$  and  $\gamma_k^*$  are parameters for destination and mobility using sum-to-zero deviation coding;  $\eta_{jk}^*$  denotes group-level heterogeneity terms; and  $\epsilon_{r_{jk}}^*$  is individual-level error. Using the DI-Diff model (see Equation E.3), the destination-mobility model outlined in Equation E.12 can be shown to be equal to the following:

---

<sup>21</sup>Note that the individual-level error term is unbiased. The reason for this is that the origin-destination model with the group-level heterogeneity terms is saturated, so the individual-level error will be the same as that from the Diff-SI model with unique heterogeneity terms, which is also saturated. Again, because our focus here is on descriptive rather than causal models, we are less concerned about the parameters being biased than that researchers have a clear idea of what is being estimated in the models.

$$\begin{aligned}
\mu_{rjk} = & \underbrace{(\mu + \phi_\mu)}_{\mu^*} + \underbrace{(\Gamma_1 + \phi_{\Gamma_1})(j - j^*) + (\tilde{\beta}_j + \phi_{\tilde{\beta}_j})}_{\beta_j^*} \\
& + \underbrace{((\Gamma_2 - \Gamma_1) + \phi_{(\Gamma_2 - \Gamma_1)})(k - k^*) + (\tilde{\gamma}_k + \phi_{\tilde{\gamma}_k})}_{\gamma_k^*} + \underbrace{(\eta_{ijk} + \nu_{ijk})}_{\eta_{jk}^*} + \underbrace{\epsilon_{rjk}}_{\epsilon_{rjk}^*}, \quad (E.13)
\end{aligned}$$

where  $\mu$  is the intercept;  $\Gamma_1 = \alpha + \beta$  is the ST slope;  $\Gamma_2 - \Gamma_1 = \gamma - \alpha$  is the intra-destination slope;  $\tilde{\beta}_j$  is the  $j$ th destination nonlinearity;  $\tilde{\gamma}_k$  is the  $k$ th mobility nonlinearity;  $\phi_\mu$ ,  $\phi_{\Gamma_1}$ ,  $\phi_{(\Gamma_2 - \Gamma_1)}$ ,  $\phi_{\tilde{\beta}_j}$ , and  $\phi_{\tilde{\gamma}_k}$  are bias terms for the intercept, ST slope, intra-destination slope,  $j$ th destination nonlinearity, and  $k$ th mobility nonlinearity;  $\eta_{ijk}$  denotes terms for unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes terms for unique origin-attributed heterogeneity; and  $\epsilon_{rjk}$  is individual-level error. The terms in brackets below Equation E.13 denote the corresponding parameters from the destination-mobility model displayed in Equation E.12.

As with the origin-destination model, there are three main conclusions that follow from Equation E.13. First, as indicated by the presence of the  $\phi$  parameters, the intercept, destination, and mobility parameters will be biased because of the exclusion of the origin nonlinearities from the destination-mobility model. Second, assuming that excluding the mobility nonlinearities results in no bias, then the underlying destination and mobility slopes will equal those from the DI-Diff model. Lastly, the group-level heterogeneity terms  $\eta_{jk}^*$  equal the sum of the unique cell-specific heterogeneity terms from the DI-Diff model,  $\eta_{ijk}$ , and the unique origin-attributed heterogeneity terms  $\nu_{ijk}$ . Similar to the origin-destination model, the origin-attributed heterogeneity terms are just the predicted values from the parameters for the origin nonlinear components (i.e., the excluded variables) using that part of the origin variables that is unrelated to the variables for the intercept, destination, and mobility terms (i.e., the included variables).

### iii. Origin-Mobility Model

The remaining two-factor model is the origin-mobility model, which has the following general form:

$$\mu_{rjk} = \mu^* + \alpha_i^* + \gamma_k^* + \eta_{ik}^* + \epsilon_{rik}^*, \quad (E.14)$$

where  $\mu^*$  is the intercept;  $\alpha_i^*$  and  $\gamma_k^*$  are parameters for origin and mobility using sum-to-zero deviation coding;  $\eta_{ik}^*$  denotes group-level heterogeneity terms; and  $\epsilon_{rik}^*$  is individual-level error. Using the SDI model (see Equation E.1), the origin-mobility model presented in Equation E.14 is shown to be equivalent to the following:

$$\begin{aligned}
\mu_{rjk} = & \underbrace{(\mu + \xi_\mu)}_{\mu^*} + \underbrace{(\Gamma_1 + \xi_{\Gamma_1})(i - i^*) + (\tilde{\alpha}_i + \xi_{\tilde{\alpha}_i})}_{\alpha_i^*} \\
& + \underbrace{(\Gamma_2 + \xi_{\Gamma_2})(k - k^*) + (\tilde{\gamma}_k + \xi_{\tilde{\gamma}_k})}_{\gamma_k^*} + \underbrace{(\eta_{ijk} + \nu_{ijk})}_{\eta_{ik}^*} + \underbrace{\epsilon_{rik}}_{\epsilon_{rik}^*}, \quad (E.15)
\end{aligned}$$

where  $\mu$  is the intercept;  $\Gamma_1 = \alpha + \beta$  is the ST slope;  $\Gamma_2 = \gamma + \beta$  is the SM slope;  $\tilde{\alpha}_i$  is the  $i$ th origin nonlinearity;  $\tilde{\gamma}_k$  is the  $k$ th mobility nonlinearity;  $\xi_\mu$ ,  $\xi_{\Gamma_1}$ ,  $\xi_{\Gamma_2}$ ,  $\xi_{\tilde{\alpha}_i}$ , and  $\xi_{\tilde{\gamma}_k}$  are bias terms for the intercept, ST slope, SM slope,  $i$ th origin nonlinearity, and  $k$ th mobility nonlinearity;  $\eta_{ijk}$  denotes terms for unique cell-specific heterogeneity;  $\nu_{ijk}$  denotes terms for unique destination-attributed heterogeneity; and  $\epsilon_{rik}$  is individual-level error. The terms in brackets below Equation E.15 refer to the corresponding parameters from the origin-mobility model shown in Equation E.14.

As with the other two-factor models, there are three main takeaways from Equation E.15. First, the intercept, origin, and mobility parameters will be biased because of the exclusion of the destination nonlinearities from the origin-mobility model. Second, assuming that excluding the destination nonlinearities produces no bias, then the underlying origin and mobility slopes will equal those from the SDI model. Finally, the group-level heterogeneity terms  $\eta_{ik}^*$  equal the sum of the unique cell-specific heterogeneity terms from the SDI model,  $\eta_{ijk}$ , and the unique destination-attributed heterogeneity terms  $\nu_{ijk}$ . The destination-attributed heterogeneity terms are, like those for the other two-factor models, simply the predicted values from the parameters for the destination nonlinearities (i.e., the excluded variables) using that part of the destination variables that is unrelated to the variables for the intercept, origin, and mobility terms (i.e., the included variables).

#### 4. Derivation of Relationships

In this section we show how the relationships outlined above can be derived using matrix algebra and the logic of omitted variable bias. We first present the derivation for the one-factor formulas using the one-factor destination model as an example. Next, we show the derivation for the two-factor models using the origin-destination model (i.e., Duncan's "square additive model").

##### i. Derivation for One-Factor Models

To show the derivation for the one-factor models, we use the class destination model, but similar calculations can be applied to derive the one-factor origin and mobility models. Suppose we fit the one-factor destination model (Equation E.6) on an individual-level data set indexed by origin, destination, and mobility. To reveal the underlying structure of the model, it is useful to express Equation E.6 as a linearized destination model, which decomposes each deviation from the overall mean into its constituent linear and nonlinear components:

$$\mu_{rjik} = f(D) = \mu^* + \beta^*(j - j^*) + \tilde{\beta}_j^* + \epsilon_{rj}^*, \quad (\text{E.16})$$

where the parameters are the same as in Equation E.6 except  $\beta^*$  denotes the destination slope and  $\tilde{\beta}_j^*$  the  $j$ th destination deviation from the overall mean. Because only the coding scheme differs between Equation E.16 and Equation E.6, we will refer to them interchangeably as a class destination model in the following discussion.

Let  $\mathbf{y}$  denote an  $R \times 1$  column vector of outcome values (e.g., means),  $\mathbf{1}$  an  $R \times 1$  column vector of 1's,  $\mathbf{d}_L$  an  $R \times 1$  column vector of the class destination linear component, and  $\tilde{\mathbf{D}}$  an  $R \times (J - 2)$  matrix of orthogonal destination polynomials with no linear component. Using matrix notation, the marginal destination model in Equation E.16 can be expressed as follows:

$$\mathbf{y} = \mathbf{1}\mu^* + \mathbf{d}_L\beta_L^* + \tilde{\mathbf{D}}\tilde{\beta}^* + \boldsymbol{\epsilon}^*. \quad (\text{E.17})$$

where  $\mu^*$  is again the intercept,  $\beta_L^*$  is the estimated marginal destination slope,  $\tilde{\beta}^*$  is a  $(J - 2) \times 1$  column vector of nonlinear destination parameters, and  $\boldsymbol{\epsilon}^*$  is an  $R \times 1$  column vector of individual-level error terms.

For the purposes of comparison, note that the SDI model (see Equation E.1) can be specified in matrix form as:

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{O}\boldsymbol{\alpha} + \mathbf{M}\boldsymbol{\gamma} + \tilde{\mathbf{D}}\tilde{\beta} + \boldsymbol{\eta} + \boldsymbol{\epsilon}, \quad (\text{E.18})$$

where  $\mu$  is the intercept,  $\mathbf{O}$  is an  $R \times (I - 1)$  matrix of orthogonal origin polynomials,  $\boldsymbol{\alpha}$  is an  $(I - 1) \times 1$  column vector of linear and nonlinear origin parameters,  $\mathbf{M}$  is an  $R \times (K - 1)$  matrix of orthogonal mobility polynomials,  $\boldsymbol{\gamma}$  is a  $(K - 1) \times 1$  column vector of linear and nonlinear mobility parameters,  $\tilde{\mathbf{D}}$  is an  $R \times (J - 2)$  matrix of orthogonal destination polynomials without

the linear component,  $\tilde{\beta}$  is a  $(J - 2) \times 1$  column vector of nonlinear destination parameters,  $\eta$  is an  $R \times 1$  column vector of cell-specific heterogeneity terms, and  $\epsilon$  is an  $R \times 1$  column vector of individual-level error terms.

To clarify the interpretation of the marginal destination model, we need to specify an auxiliary equation that expresses the association between those variables included in the marginal destination model and those excluded from the marginal destination model but included in the SDI model. To do so, we first define a matrix  $\mathbf{S}$  of dimension  $J \times (I + K - 2)$  as follows:

$$\mathbf{S} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z}, \quad (\text{E.19})$$

where  $\mathbf{X} = [\mathbf{1} \ \mathbf{d}_L \ \tilde{\mathbf{D}}]$  is an  $R \times J$  matrix of 1's, the destination linear component, and higher-order orthogonal destination polynomials; and  $\mathbf{Z} = [\mathbf{O}, \mathbf{M}]$  is an  $R \times (I + K - 2)$  matrix of orthogonal origin and mobility polynomials. The matrix  $\mathbf{S}$  is simply a collection of parameters representing relationships between those variables included in the marginal destination model ( $\mathbf{X}$ ) and those variables excluded from the marginal destination model but included in the SDI model ( $\mathbf{Z}$ ). Using  $\mathbf{Z}$ ,  $\mathbf{S}$ , and  $\mathbf{X}$ , we can accordingly define an auxiliary equation compactly as  $\mathbf{Z} = \mathbf{X}\mathbf{S} + \mathbf{U}_Z$  or, equivalently:

$$[\mathbf{O}, \mathbf{M}] = \mathbf{1}\mathbf{s}_\mu + \mathbf{d}_L\mathbf{s}_{d_L} + \tilde{\mathbf{D}}\mathbf{S}_{\tilde{D}} + \mathbf{U}_{[O,M]}, \quad (\text{E.20})$$

where  $\mathbf{s}_\mu$  is a  $1 \times (I + K - 2)$  row vector of parameters,  $\mathbf{s}_{d_L}$  is a  $1 \times (I + K - 2)$  row vector of parameters,  $\mathbf{S}_{\tilde{D}}$  is a  $(J - 2) \times (I + K - 2)$  matrix of parameters, and  $\mathbf{U}_{[O,M]}$  is an  $R \times (I + K - 2)$  matrix of error terms representing that part of  $\mathbf{O}$  and  $\mathbf{M}$  unrelated to the variables included in the marginal destination model (i.e., the intercept, destination linear component, and higher-order destination polynomials).<sup>22</sup>

To clarify the meaning of the parameters of the marginal destination model (Equation E.17), we can simply substitute Equation E.20 into Equation E.17. This is easily accomplished by re-writing Equation E.18 as  $\mathbf{y} = \mathbf{1}\mu + \mathbf{Z}\zeta + \tilde{\mathbf{D}}\tilde{\beta} + \eta + \epsilon$ , where  $\zeta$  is an  $(I + K - 2) \times 1$  column vector of origin and mobility parameters such that:

$$\zeta = \begin{pmatrix} \alpha \\ \gamma \end{pmatrix}$$

We then just plug in  $\mathbf{Z} = \mathbf{1}\mathbf{s}_\mu + \mathbf{d}_L\mathbf{s}_{d_L} + \tilde{\mathbf{D}}\mathbf{S}_{\tilde{D}} + \mathbf{U}_Z$  into this equation. After rearranging terms, we obtain the following:

$$\mathbf{y} = \underbrace{\mathbf{1}(\mu + \mathbf{s}_\mu\zeta)}_{\mu^*} + \underbrace{\mathbf{d}_L(\mathbf{s}_{d_L}\zeta)}_{\beta_L^*} + \underbrace{\tilde{\mathbf{D}}(\tilde{\beta} + \mathbf{S}_{\tilde{D}}\zeta)}_{\tilde{\beta}^*} + \underbrace{\epsilon + \eta + \mathbf{U}_Z\zeta}_{\epsilon^*}, \quad (\text{E.21})$$

which reveals how the SDI model is related to the marginal destination model. Several points are worth emphasizing. First, the marginal destination slope is a weighted sum of the ST and SM slopes (which are contained in  $\zeta$ ), with weights given by the relationships between the destination linear component and the origin and mobility linear components (which are contained in the row vector  $\mathbf{s}_{d_L}$ ). Second, the parameters from the marginal destination model will all have some degree of bias due to the exclusion of the origin and mobility components. Depending on the structure of the data, the origin and mobility polynomials in  $\mathbf{Z}$  will be more or less associated with the set of included variables, namely, the vector  $\mathbf{1}$ , destination linear component  $\mathbf{d}_L$ , and higher-order destination polynomials  $\tilde{\mathbf{D}}$ .<sup>23</sup> If these relationships are strong, then the bias will be large, and the parameter

<sup>22</sup>Note that  $\mathbf{s}_\mu$  is simply the first row of  $\mathbf{S}$ ,  $\mathbf{s}_{d_L}$  is the second row, and  $\mathbf{S}_{\tilde{D}}$  is rows 3 to  $J$  of  $\mathbf{S}$ .

<sup>23</sup>However, note that, because the marginal destination slope is defined by the weighted sum of the ST and SM slopes, the bias for the marginal destination slope is a function of only the relationship between the included variables and the

estimates for the intercept and destination nonlinear terms from the marginal destination model and the SDI models will differ, possibly quite substantially. By contrast, if these relationships are weak, then the bias will be relatively small, such that the intercept and destination nonlinear terms of the marginal destination model will be approximately equal to those from the SDI model. Lastly, the individual-level error term ( $\epsilon^*$ ) of the marginal destination model can be interpreted as the sum of individual-level error terms from the SDI model, the unique cell-specific heterogeneity terms  $\eta$ , and the column vector of origin and mobility parameters  $\zeta$ , the latter of which are weighted by  $U_Z$ , or that part of the excluded variables (i.e., the orthogonal origin and mobility polynomials) unrelated to the variables included in the marginal destination model.

### *ii. Derivation for Two-Factor Models*

We illustrate the derivation for the two-factor models using the origin-destination model, but similar calculations can be applied to the destination-mobility and origin-mobility models. Suppose we fit the origin-destination model (Equation E.10) on an individual-level data set indexed by origin, destination, and mobility. To reveal the underlying structure of the model, it is useful to express Equation E.10 as a linearized origin-destination model with group-level heterogeneity terms, which decomposes each deviation from the overall mean into its constitutive linear and nonlinear components:

$$\mu_{rijk} = \mu^* + \alpha^*(i - i^*) + \tilde{\alpha}_i^* + \beta^*(j - j^*) + \tilde{\beta}_j^* + \eta_{ij}^* + \epsilon_{rij}^*, \quad (E.22)$$

where the parameters are the same as in Equation E.10 except  $\alpha^*$  denotes the origin slope,  $\tilde{\alpha}_i^*$  the  $i$ th origin deviation from the overall mean,  $\beta^*$  the destination slope, and  $\tilde{\beta}_j^*$  the  $j$ th destination deviation from the overall mean. Because Equation E.22 is the same as that in Equation E.10, but with a different coding scheme, we will refer to them interchangeably as an origin-destination model in the discussion that follows.

Let  $\mathbf{y}$  denote an  $R \times 1$  column vector of outcome values (e.g., means),  $\mathbf{1}$  an  $R \times 1$  column vector of 1's,  $\mathbf{O}$  an  $R \times (I - 1)$  matrix of orthogonal origin polynomials, and  $\mathbf{D}$  an  $R \times (J - 1)$  matrix of orthogonal destination polynomials. Using matrix notation, the origin-destination model in Equation E.22 can be expressed as follows:

$$\mathbf{y} = \mathbf{1}\mu^* + \mathbf{O}\alpha^* + \mathbf{D}\beta^* + \eta^* + \epsilon^*. \quad (E.23)$$

where  $\mu^*$  is again the intercept,  $\alpha^*$  is an  $(I - 1) \times 1$  column vector of linear and nonlinear origin parameters,  $\beta^*$  is a  $(J - 1) \times 1$  column vector of linear and nonlinear destination parameters,  $\eta^*$  is an  $R \times 1$  column vector of group-level heterogeneity parameters, and  $\epsilon^*$  is an  $R \times 1$  column vector of individual-level error terms.

For the purposes of comparison, note that the Diff-SI model (see Equation E.2) can be specified in matrix form as:

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{O}\alpha + \mathbf{D}\beta + \widetilde{\mathbf{M}}\tilde{\gamma} + \eta + \epsilon, \quad (E.24)$$

where  $\mu$  is the intercept,  $\alpha$  is an  $(I - 1) \times 1$  column vector of linear and nonlinear origin parameters,  $\beta$  is a  $(J - 1) \times 1$  column vector of linear and nonlinear destination parameters,  $\widetilde{\mathbf{M}}$  an  $R \times (K - 2)$  matrix of orthogonal mobility polynomials with no linear component,  $\tilde{\gamma}$  is a  $(K - 2) \times 1$  column vector of nonlinear mobility parameters,  $\eta$  is an  $R \times 1$  column vector of cell-specific heterogeneity terms, and  $\epsilon$  is an  $R \times 1$  column vector of individual-level error terms.

Similar to the calculations for the marginal destination model in the previous section, to interpret the meaning of the parameters of the origin-destination model, we need to specify an auxiliary equation that expresses the association between those variables included in the origin-destination

---

origin and mobility polynomials without the linear component.

model and those excluded from the origin-destination model but included in the Diff-SI model. As before, we can define a matrix  $\mathbf{S}$  of dimension  $(I + J - 1) \times (K - 2)$  as  $\mathbf{S} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Z}$ , where  $\mathbf{X} = [\mathbf{1} \ \mathbf{O} \ \mathbf{D}]$  is an  $R \times (I + J - 1)$  matrix of 1's, orthogonal origin polynomials, and orthogonal destination polynomials; and  $\mathbf{Z} = \widetilde{\mathbf{M}}$  is an  $R \times (K - 2)$  matrix of orthogonal class mobility polynomials with no linear component. Again, the matrix  $\mathbf{S}$  is simply a collection of parameters representing relationships between those variables included in the origin-destination model ( $\mathbf{X}$ ) and those variables excluded from the origin-destination model but included in the Diff-SI model ( $\mathbf{Z}$ ). Using  $\mathbf{Z}$ ,  $\mathbf{S}$ , and  $\mathbf{X}$ , we can accordingly define an auxiliary equation compactly as  $\mathbf{Z} = \mathbf{X}\mathbf{S} + \mathbf{U}_Z$  or, equivalently:

$$\widetilde{\mathbf{M}} = \mathbf{1}\mathbf{s}_\mu + \mathbf{O}\mathbf{S}_O + \mathbf{D}\mathbf{S}_D + \mathbf{U}_{\widetilde{M}}, \quad (\text{E.25})$$

where  $\mathbf{s}_\mu$  is a  $1 \times (K - 2)$  row vector of parameters,  $\mathbf{S}_O$  is an  $(I - 1) \times (K - 2)$  matrix of parameters,  $\mathbf{S}_D$  is a  $(J - 1) \times (K - 2)$  matrix of parameters, and  $\mathbf{U}_{\widetilde{M}}$  is an  $R \times (K - 2)$  matrix of error terms representing that part of  $\widetilde{\mathbf{M}}$  unrelated to the variables included in the origin-destination model.<sup>24</sup>

To clarify the meaning of the parameters of the origin-destination model (Equation E.22), we can simply substitute Equation E.25 into Equation E.23. After substituting and rearranging terms, we obtain the following equation:

$$\mathbf{y} = \underbrace{\mathbf{1}(\mu + \mathbf{s}_\mu \widetilde{\boldsymbol{\gamma}})}_{\mu^*} + \underbrace{\mathbf{O}(\boldsymbol{\alpha} + \mathbf{S}_O \widetilde{\boldsymbol{\gamma}})}_{\boldsymbol{\alpha}^*} + \underbrace{\mathbf{D}(\boldsymbol{\beta} + \mathbf{S}_D \widetilde{\boldsymbol{\gamma}})}_{\boldsymbol{\beta}^*} + \underbrace{(\boldsymbol{\eta} + \mathbf{U}_{\widetilde{M}} \widetilde{\boldsymbol{\gamma}})}_{\boldsymbol{\eta}^*} + \underbrace{\boldsymbol{\epsilon}}_{\boldsymbol{\epsilon}^*}, \quad (\text{E.26})$$

which reveals how the Diff-SI model is related to the origin-destination model. As noted previously, the intercept, origin, and destination parameters from the origin-destination model will all have some degree of bias due to the exclusion of the mobility nonlinear components. Depending on the structure of the data, the orthogonal mobility polynomials in  $\widetilde{\mathbf{M}}$  will be more or less related to the vector  $\mathbf{1}$ , orthogonal origin polynomials  $\mathbf{O}$ , and orthogonal destination polynomials  $\mathbf{D}$ . If these relationships are strong, then the bias will be large, and the parameter estimates from the origin-destination and the Diff-SI models will differ, possibly quite substantially. By contrast, if these relationships are weak, then the bias will be relatively small, such that the intercept, origin, and destination parameters of the origin-destination model will be approximately equal to those from the Diff-SI model. Similarly, the vector of group-level heterogeneity terms  $\boldsymbol{\eta}^*$  in the origin-destination model, which can be interpreted as a restricted set of origin-destination interactions, is equal to a weighted sum of the cell-specific heterogeneity terms  $\boldsymbol{\eta}$  and the mobility nonlinearities  $\widetilde{\boldsymbol{\gamma}}$ , the latter of which are weighted by  $\mathbf{U}_{\widetilde{M}}$ , or that part of the excluded variables unrelated to the variables included in the origin-destination model.

Equation E.26 additionally clarifies how the mobility nonlinearities can be viewed as a kind of “structured” interaction with respect to origin and destination.<sup>25</sup> We can show this relationship by taking the equation  $\boldsymbol{\eta}^* = \boldsymbol{\eta} + \mathbf{U}_{\widetilde{M}} \widetilde{\boldsymbol{\gamma}}$  and solving for  $\widetilde{\boldsymbol{\gamma}}$ , the mobility nonlinearities from the Diff-SI model. Because  $\mathbf{U}_{\widetilde{M}}$  is non-square, it does not have a regular inverse. However, it has a Moore-Penrose generalized inverse that is equal to the left inverse of  $\mathbf{U}_{\widetilde{M}}$ . Solving for  $\widetilde{\boldsymbol{\gamma}}$  gives us the following:

$$\begin{aligned} \widetilde{\boldsymbol{\gamma}} &= \mathbf{U}_{\widetilde{M}}^+ (\boldsymbol{\eta}^* - \boldsymbol{\eta}) = (\mathbf{U}_{\widetilde{M}}' \mathbf{U}_{\widetilde{M}})^{-1} \mathbf{U}_{\widetilde{M}}' (\boldsymbol{\eta}^* - \boldsymbol{\eta}) \\ &= (\mathbf{U}_{\widetilde{M}}' \mathbf{U}_{\widetilde{M}})^{-1} \mathbf{U}_{\widetilde{M}}' \boldsymbol{\eta}^* \end{aligned} \quad (\text{E.27})$$

<sup>24</sup>Note that  $\mathbf{s}_\mu$  is simply the first row of  $\mathbf{S}$ ,  $\mathbf{S}_O$  is rows 2 to  $I$  of  $\mathbf{S}$ , and  $\mathbf{S}_D$  is rows  $I + 1$  to  $I + J - 1$  of  $\mathbf{S}$ .

<sup>25</sup>What this means in practice is that the SDI model outlined in the main text is, in fact, interactive in the data although it is additive in the parameters.

where the plus  $+$  denotes a Moore-Penrose generalized inverse and  $(\mathbf{U}'_{\widetilde{M}} \mathbf{U}_{\widetilde{M}})^{-1} \mathbf{U}'_{\widetilde{M}}$  is the left inverse of  $\mathbf{U}_{\widetilde{M}}$ .<sup>26</sup> Equation E.27 reveals that the mobility nonlinearities are equal to a regression model predicting heterogeneity from origin-destination interactions using that part of the orthogonal mobility polynomials unrelated to the intercept, origin, and destination variables included in the origin-destination model.<sup>27</sup> Similar derivations as those outlined in this section can be conducted in an analogous way for the destination-mobility and origin-mobility models.<sup>28</sup>

## 5. Higher-Order Interactions on a Mobility Table

So far little has been stated about the structure of the higher-order interactions beyond that for origin, destination, and mobility. In this section we discuss higher-order interactions on mobility tables. As we illustrate, only a limited number of interactions can be included beyond the main set of parameters for origin, destination, and mobility. This reflects the fact that, descriptively, including all three main parameters means there is already a structured interaction captured by a three-factor model.

To illustrate the limited number of interactions that can be explicitly included, suppose we use orthogonal polynomial contrasts so that we have  $I - 2$ ,  $J - 2$ , and  $K - 2$  columns for the higher-order terms of origin, destination, and mobility, respectively. Then the SDI model<sup>29</sup> can be represented as:

$$Y_{ijk} = \mu + (\alpha + \beta)o_L + (\gamma + \beta)m_L + \sum_{i=2}^{I-1} \alpha^i o_i + \sum_{j=2}^{J-1} \beta^j d_j + \sum_{k=2}^{K-1} \gamma^k m_k + \eta_{ijk} + \xi_{r_{ijk}}, \quad (\text{E.28})$$

where  $\eta_{ijk}$  are cell-specific heterogeneity terms and  $\xi_{r_{ijk}}$  are individual-level errors. We treat these as residual (or orthogonal) to the main parameters in the model in the discussions above (see also Duncan 1966).

However, an alternative representation of the  $\eta_{ijk}$  terms is to specify them as higher-order interactions. However, because of the linear dependency among the variables, only a restricted set of interactions can be included. Specifically, given an origin-destination mobility table, one can specify the  $\eta_{ijk}$  terms as follows:

$$\eta_{ijk} = \sum_{j=2}^{J-1} \beta_{Lj} (o_L d_j) + \sum_{i=2}^{I-2} \sum_{j=2}^{J-1} \beta_{ij} (o_i d_j). \quad (\text{E.29})$$

where the number of additional parameters above the baseline SDI model are  $(I - 2)(J - 2)$ . Note that these additional terms represent interactions of a “smoothed” origin curve with the destina-

---

<sup>26</sup>Note that we can drop  $\boldsymbol{\eta}$  from Equation E.27 because, by construction (see Equation E.1), it is unrelated to the orthogonal mobility polynomials such that  $(\mathbf{U}'_{\widetilde{M}} \mathbf{U}_{\widetilde{M}})^{-1} \mathbf{U}'_{\widetilde{M}} \boldsymbol{\eta}$  will produce a  $K - 2$  column vector of zeros.

<sup>27</sup>The more the mobility variables are related to the heterogeneity from the origin-destination interactions, the larger in absolute value the size of the mobility nonlinearities. Note further that if the mobility variables are unrelated to the variables included in the origin-destination model, then  $\mathbf{U}_{\widetilde{M}} = \widetilde{\mathbf{M}}$ . Accordingly, Equation E.27 simplifies further to  $(\widetilde{\mathbf{M}}' \widetilde{\mathbf{M}})^{-1} \widetilde{\mathbf{M}}' \boldsymbol{\eta}^*$ . In other words, assuming the included and excluded variables are unrelated, we can simply take the mobility variables and use them to predict the heterogeneity from the origin-destination interactions to obtain the mobility nonlinearities. To the extent that the mobility variables are only weakly related to the intercept, origin, and destination variables in the origin-destination model, then this procedure will reproduce, within an error of approximation, the mobility nonlinearities from the Diff-SI model.

<sup>28</sup>However, note that, because there is inherent censoring on a mobility table with respect to mobility, one cannot include all mathematically pairwise interactions in a destination-mobility or origin-mobility model. By contrast, although we have treated origin-destination interactions as cell-specific residuals, one could model them as all possible pairwise interactions on a mobility table.

<sup>29</sup>We use the SDI model for illustrative purposes here, but our results apply to any of the models discussed above.

tion nonlinear components. These interactions could be reversed so that the parameters represent interactions of a “smoothed” destination curve with the origin nonlinear components.

To illustrate how the additional terms can be included in an L-ODM model, consider data from an origin-destination mobility table. Given a mobility table, one can incorporate additional heterogeneity using the particular set of origin-destination interactions outlined in Equation E.29. The  $\beta_{Lj}$  parameters are interaction terms between the origin linear component and the destination nonlinear components, while the  $\beta_{ij}$  parameters are interactions between the origin nonlinear components (except for the last origin nonlinear component) and the destination nonlinear components. This allows a smoothed origin curve to vary as a function of the destination nonlinear components.

To show what the full SDI model with higher-order origin-destination interactions would be, suppose there are  $I = 5$  origin groups and  $J = 5$  destination groups (and thus  $K = I + J - 1 = 9$  mobility groups). Above the baseline SDI model, we can include  $(I - 2)(J - 2) = 9$  additional parameters representing particular origin-destination interactions. Then the SDI model with fully specified higher-order origin-destination interactions is:

$$\begin{aligned}\mu_{r_{ijk}} = \mu + (\gamma + \beta)m_L + (\alpha + \beta)o_L + \alpha^2o_2 + \cdots + \alpha^4o_4 + \beta^2d_2 + \cdots + \beta^4d_4 + \gamma^2m_2 + \cdots + \gamma^8m_8 + \\ \beta_{L2}(o_Ld_2) + \beta_{L3}(o_Ld_3) + \beta_{L4}(o_Ld_4) + \beta_{22}(o_2d_2) + \beta_{23}(o_2d_3) + \beta_{24}(o_2d_4) + \\ \beta_{32}(o_3d_2) + \beta_{33}(o_3d_3) + \beta_{34}(o_3d_4) + \xi_{r_{ijk}},\end{aligned}\quad (\text{E.30})$$

where the additional terms represent intra-mobility heterogeneity, or heterogeneity within the diagonals of the mobility table. However, we caution against indiscriminately including these higher-order terms directly in the main model without checking for multicollinearity. In general, including these additional interactions results in a full-rank design matrix (and thus the model is identified), but in practice these additional columns are highly collinear with the main columns of the baseline SDI model, resulting in highly unstable estimates.

## Online Appendix F: Additional Structural and Dynamic Inequalities

In the main manuscript, we focus on several key parametric expressions that can be derived from the structural and dynamic inequality (SDI) model. Below, we show a more complete list of expressions that can be derived from the SDI model and then illustrate the analytic use of one additional expression that focuses on class destination.

*Full list of expressions derived from the SDI model*

Table F.1: Summarizing Structural and Dynamic Inequalities on a Mobility Table

| General Terminology               | Specific Summary                      | Mathematical Expression                                                                                                              |
|-----------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Structural Inequality             | Social Structure Slope                | $\Gamma_1(i - i^*)$<br>for all $i$                                                                                                   |
|                                   | Social Structure Curve                | $\Gamma_1(i - i^*) + \tilde{\alpha}_i$<br>for all $i$                                                                                |
|                                   | Social Structure Surface              | $\Gamma_1(i - i^*) + \tilde{\alpha}_i + \tilde{\beta}_j$<br>for combinations of $i, j$                                               |
|                                   | Local Social Structure Curves         | $\Gamma_1(i - i^*) + \tilde{\alpha}_i + \tilde{\beta}_{[i+k-I]}$<br>for all $i$ in each mobility group $k$                           |
| Dynamic Inequality                | Social Mobility Slope                 | $\Gamma_2(k - k^*)$<br>for all $k$                                                                                                   |
|                                   | Social Mobility Curve                 | $\Gamma_2(k - k^*) + \tilde{\gamma}_k$<br>for all $k$                                                                                |
|                                   | Social Mobility Surface               | $\Gamma_2(k - k^*) + \tilde{\gamma}_k + \tilde{\beta}_j$<br>for combinations of $k, j$                                               |
|                                   | Local Social Mobility Curves          | $\Gamma_2(k - k^*) + \tilde{\gamma}_k + \tilde{\beta}_{[k+i-I]}$<br>for all $k$ in each origin group $i$                             |
| Structural & Dynamic Inequalities | Adjusted Marginal Destination Slope   | $(\Gamma_1\omega_{(i,j)} + \Gamma_2\omega_{(k,j)}) (j - j^*)$<br>for all $j$                                                         |
|                                   | Adjusted Marginal Destination Curve   | $(\Gamma_1\omega_{(i,j)} + \Gamma_2\omega_{(k,j)}) (j - j^*) + \tilde{\beta}_j$<br>for all $j$                                       |
|                                   | Overall Comparative Mobility Curve    | $\phi_i + \Gamma_2(k - k^*) + \tilde{\gamma}_k$<br>for all $k$ in each origin group $i$                                              |
|                                   | Adjusted Comparative Mobility Curve   | $\phi_i + \Gamma_2(k - k^*) + \tilde{\gamma}_k + \tilde{\beta}_{[i+k-I]}$<br>for all $k$ in each origin group $i$                    |
|                                   | Unadjusted Comparative Mobility Curve | $\phi_i + \Gamma_2(k - k^*) + \tilde{\gamma}_k + \tilde{\beta}_{[i+k-I]} + \eta_{i[i+k-I]k}$<br>for all $k$ in each origin group $i$ |

Notes:  $\Gamma_1 = \alpha + \beta$  and  $\Gamma_2 = \gamma + \beta$ . The quantity  $\phi_i$  is equal to  $\Gamma_1(i - i^*) + \tilde{\alpha}_i$ , which is a single value for a given origin group  $i$ .

### Adjusted Marginal Destination Curve

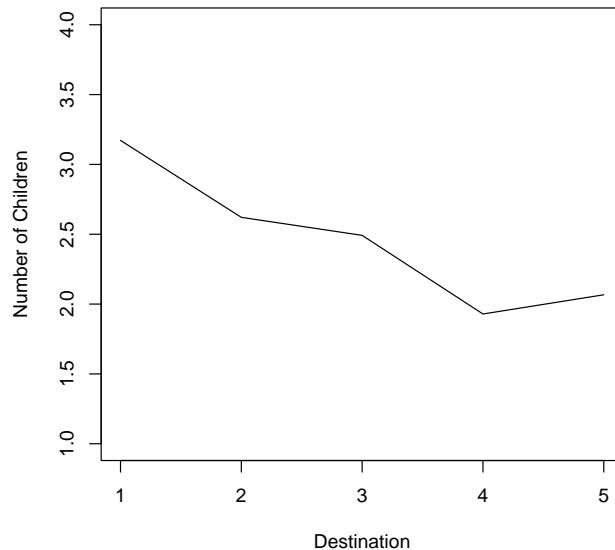
To illustrate the analytic use of just one additional expression from Table F.1, we now discuss the *adjusted marginal destination curve*. So far we have focused on examining the data through the lens of the SDI model, which is a general model of the form  $Y = f(O, M) + \epsilon$ . However, as we outlined in earlier sections, it may be useful in some circumstances to also examine the data using a marginal class destination model, which has the general form of  $Y = f(D) + \epsilon$ , where again, without loss of generality,  $\epsilon$  is a normally distributed error term with a mean of zero. A particularly useful summary is the adjusted marginal destination curve, which is equal to:

$$\beta_M(j - j^*) + \tilde{\beta}_j = (\Gamma_1\omega_{(i,j)} + \Gamma_2\omega_{(k,j)}) (j - j^*) + \tilde{\beta}_j \text{ for } j = 1, \dots, J, \quad (\text{F.1})$$

where  $\Gamma_1 = \alpha + \beta$ ;  $\Gamma_2 = \gamma + \beta$ ;  $\omega_{(i,j)}$  is the relationship between the origin linear component and the destination linear component conditional on the origin, destination, and mobility nonlinearities; and, lastly,  $\omega_{(k,j)}$  is the relationship between the mobility linear component and the destination linear component again conditional on the origin, destination, and mobility nonlinearities. This curve is equivalent to a simple class destination model (see Equation E.6 in Online Appendix E), but we have adjusted for the origin, destination, and mobility nonlinearities. Failing to adjust for the origin and mobility nonlinearities will introduce bias into the estimated overall class destination gap. However, a more practical reason for adjusting for the origin and mobility nonlinearities is that we can decompose the overall (linear) class destination gap into structural and dynamic components. This allows us to answer crucial questions regarding the extent to which cross-destination differences are attributable to differences in the social structure versus social mobility.

The  $\widehat{\Gamma}_1 \widehat{\omega}_{(i,j)}$  term in Equation F.1 gives the contribution of social structure to the adjusted class destination slope, while  $\widehat{\Gamma}_2 \widehat{\omega}_{(k,j)}$  gives the contribution of social mobility. In general, social structure will contribute more to the class destination slope the greater the degree of correlation between class origin and destination, as well as the greater the relationship between the ST slope and the outcome. Similarly, in general, social mobility will contribute more to the class destination slope the greater the degree of correlation between class mobility and destination, as well as the stronger the relationship between the SM slope and the outcome. If social mobility does not vary, destination gaps reflect only social structure; if there is no structural inequality, they reflect only social mobility. In other words, the SDI model can be used to decompose any marginal class destination gap, i.e., the kind of social class gaps that are arguably the most common estimand in social stratification research, into distinct structural- versus mobility-based components.

Figure F.1: Adjusted Marginal Destination Curve



*Notes:* Panel shows the adjusted marginal class destination curve, which is estimated conditional on the origin and mobility nonlinearities. The curve is a function of  $\beta_M(j - j^*) + \widehat{\beta}_j$  for all class destination groups  $j$ . Data are based on Sobel (1981).

Figure F.1 shows the adjusted marginal class destination curve for the fertility data. As can be seen, there is a general observed decline in fertility as one compares lower versus higher class

destinations. The underlying adjusted marginal destination slope is  $\widehat{\beta}_M = -0.290$ , indicating a negative relationship between fertility and class destination. Using Equation F.1, we can decompose this overall slope into structural and social mobility components:

$$\widehat{\beta}_M = \left( \widehat{\Gamma}_1 \widehat{\omega}_{(i,j)} + \widehat{\Gamma}_2 \widehat{\omega}_{(k,j)} \right) = (-0.317)(0.740) + (-0.213)(0.260) = (-0.235) + (-0.055), \quad (\text{F.2})$$

the sum of which equals adjusted marginal destination slope, or  $-0.290$ . In this case, most of the class destination gap is a function of structural differences, reflecting both the relatively large ST slope as well as the strong relationship between the class destination linear component and class destination origin linear component.

## Online Appendix G: Supplemental Tables and Figures

Table G.1: Bounding Formulas for Slopes

|                     |                                                                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Origin Bounds:      | $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$<br>$\Gamma_1 - \alpha_{\max} \leq \beta \leq \Gamma_1 - \alpha_{\min}$<br>$(\Gamma_2 - \Gamma_1) + \alpha_{\min} \leq \gamma \leq (\Gamma_2 - \Gamma_1) + \alpha_{\max}$ |
| Destination Bounds: | $\Gamma_1 - \beta_{\max} \leq \alpha \leq \Gamma_1 - \beta_{\min}$<br>$\beta_{\min} \leq \beta \leq \beta_{\max}$<br>$\Gamma_2 - \beta_{\max} \leq \gamma \leq \Gamma_2 - \beta_{\min}$                                 |
| Mobility Bounds:    | $(\Gamma_1 - \Gamma_2) + \gamma_{\min} \leq \alpha \leq (\Gamma_1 - \Gamma_2) + \gamma_{\max}$<br>$\Gamma_2 - \gamma_{\max} \leq \beta \leq \Gamma_2 - \gamma_{\min}$<br>$\gamma_{\min} \leq \gamma \leq \gamma_{\max}$ |

*Notes:* Origin, destination, and mobility slopes are  $\alpha$ ,  $\beta$ , and  $\gamma$ , respectively, with  $(.)_{\min}$  and  $(.)_{\max}$  denoting minimum and maximum values of the bounds. We denote  $\Gamma_1 = \alpha + \beta$ ,  $\Gamma_2 = \beta + \gamma$ ,  $\Gamma_1 - \Gamma_2 = \alpha - \gamma$ , and  $\Gamma_2 - \Gamma_1 = \gamma - \alpha$ .

Table G.2: Bounds Given by Setting the Sign of One or Two Slopes

| Sign of One Slope        | Origin                                        | Destination                     | Mobility                                      |
|--------------------------|-----------------------------------------------|---------------------------------|-----------------------------------------------|
| If $\alpha \geq 0$ then: | $0 \leq \alpha < +\infty$                     | $-\infty < \beta \leq \Gamma_1$ | $(\Gamma_2 - \Gamma_1) \leq \gamma < +\infty$ |
| If $\alpha \leq 0$ then: | $-\infty < \alpha \leq 0$                     | $\Gamma_1 \leq \beta < +\infty$ | $-\infty < \gamma \leq (\Gamma_2 - \Gamma_1)$ |
| If $\beta \geq 0$ then:  | $-\infty < \alpha \leq \Gamma_1$              | $0 \leq \beta < +\infty$        | $-\infty < \gamma \leq \Gamma_2$              |
| If $\beta \leq 0$ then:  | $\Gamma_1 \leq \alpha < +\infty$              | $-\infty < \beta \leq 0$        | $\Gamma_2 \leq \gamma < +\infty$              |
| If $\gamma \geq 0$ then: | $(\Gamma_1 - \Gamma_2) \leq \alpha < +\infty$ | $-\infty < \beta \leq \Gamma_2$ | $0 \leq \gamma < +\infty$                     |
| If $\gamma \leq 0$ then: | $-\infty < \alpha \leq (\Gamma_1 - \Gamma_2)$ | $\Gamma_2 \leq \beta < +\infty$ | $-\infty < \gamma \leq 0$                     |

| Sign of Two Slopes                           | Origin                                            | Destination                         | Mobility                                          |
|----------------------------------------------|---------------------------------------------------|-------------------------------------|---------------------------------------------------|
| If $\alpha \geq 0$ and $\beta \geq 0$ then:  | $0 \leq \alpha \leq \Gamma_1$                     | $0 \leq \beta \leq \Gamma_1$        | $(\Gamma_2 - \Gamma_1) \leq \gamma \leq \Gamma_2$ |
| If $\alpha \leq 0$ and $\beta \leq 0$ then:  | $\Gamma_1 \leq \alpha \leq 0$                     | $\Gamma_1 \leq \beta \leq 0$        | $\Gamma_2 \leq \gamma \leq (\Gamma_2 - \Gamma_1)$ |
| If $\beta \geq 0$ and $\gamma \geq 0$ then:  | $(\Gamma_1 - \Gamma_2) \leq \alpha \leq \Gamma_1$ | $0 \leq \beta \leq \Gamma_2$        | $0 \leq \gamma \leq \Gamma_2$                     |
| If $\beta \leq 0$ and $\gamma \leq 0$ then:  | $\Gamma_1 \leq \alpha \leq (\Gamma_1 - \Gamma_2)$ | $\Gamma_2 \leq \beta \leq 0$        | $\Gamma_2 \leq \gamma \leq 0$                     |
| If $\alpha \geq 0$ and $\gamma \leq 0$ then: | $0 \leq \alpha \leq (\Gamma_1 - \Gamma_2)$        | $\Gamma_2 \leq \beta \leq \Gamma_1$ | $(\Gamma_2 - \Gamma_1) \leq \gamma \leq 0$        |
| If $\alpha \leq 0$ and $\gamma \geq 0$ then: | $(\Gamma_1 - \Gamma_2) \leq \alpha \leq 0$        | $\Gamma_1 \leq \beta \leq \Gamma_2$ | $0 \leq \gamma \leq (\Gamma_2 - \Gamma_1)$        |

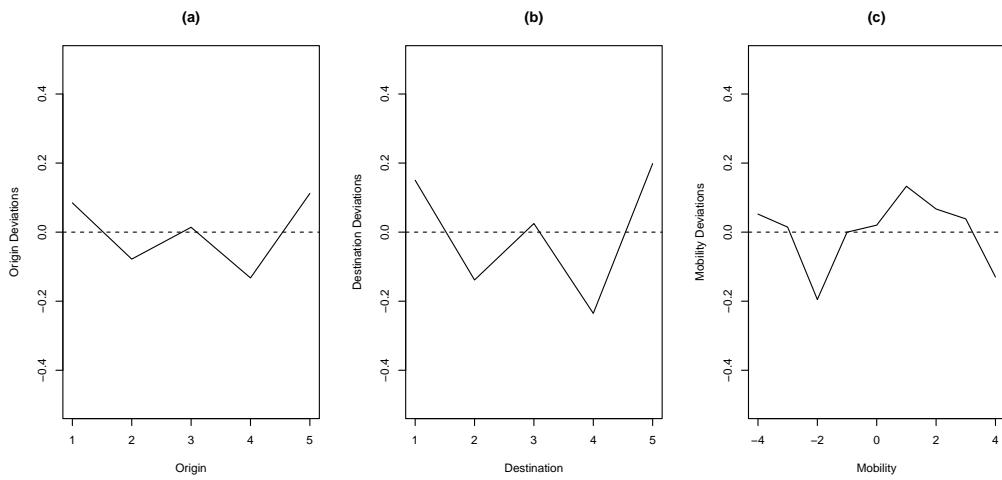
*Notes:* Origin, destination, and mobility slopes are  $\alpha$ ,  $\beta$ , and  $\gamma$ , respectively, with  $(\cdot)_{\min}$  and  $(\cdot)_{\max}$  denoting minimum and maximum values of the bounds. We denote  $\Gamma_1 = \alpha + \beta$ ,  $\Gamma_2 = \beta + \gamma$ ,  $\Gamma_1 - \Gamma_2 = \alpha - \gamma$ , and  $\Gamma_2 - \Gamma_1 = \gamma - \alpha$ .

Table G.3: Relationships among ST, SM, & Intra-Destination Slopes

|                                   |                                                            |
|-----------------------------------|------------------------------------------------------------|
| Social Structure (ST) Slope:      | If $\Gamma_1 = 0$ , then: $\Gamma_2 - \Gamma_1 = \Gamma_2$ |
|                                   | If $\Gamma_1 > 0$ , then: $\Gamma_2 - \Gamma_1 < \Gamma_2$ |
|                                   | If $\Gamma_1 < 0$ , then: $\Gamma_2 - \Gamma_1 > \Gamma_2$ |
| Social Mobility (SM) Slope:       | If $\Gamma_2 = 0$ , then: $\Gamma_1 - \Gamma_2 = \Gamma_1$ |
|                                   | If $\Gamma_2 > 0$ , then: $\Gamma_1 - \Gamma_2 < \Gamma_1$ |
|                                   | If $\Gamma_2 < 0$ , then: $\Gamma_1 - \Gamma_2 > \Gamma_1$ |
| Intra-Destination Origin Slope:   | If $\Gamma_1 - \Gamma_2 = 0$ , then: $\Gamma_1 = \Gamma_2$ |
|                                   | If $\Gamma_1 - \Gamma_2 > 0$ , then: $\Gamma_1 > \Gamma_2$ |
|                                   | If $\Gamma_1 - \Gamma_2 < 0$ , then: $\Gamma_1 < \Gamma_2$ |
| Intra-Destination Mobility Slope: | If $\Gamma_2 - \Gamma_1 = 0$ , then: $\Gamma_2 = \Gamma_1$ |
|                                   | If $\Gamma_2 - \Gamma_1 > 0$ , then: $\Gamma_2 > \Gamma_1$ |
|                                   | If $\Gamma_2 - \Gamma_1 < 0$ , then: $\Gamma_2 < \Gamma_1$ |

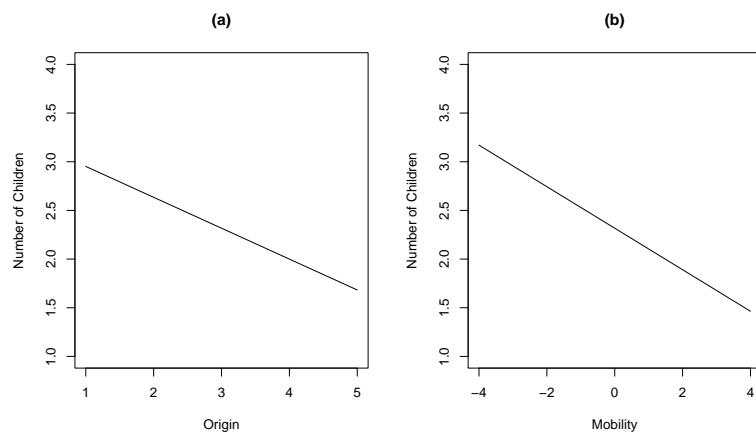
Notes:  $\Gamma_1 = \alpha + \beta$  and  $\Gamma_2 = \gamma + \beta$ .

Figure G.1: Nonlinearities for Origin, Destination, and Mobility



*Notes:* Panels (a), (b), and (c) show the origin, destination, and mobility nonlinearities, which are constrained to sum to zero. Data are based on Sobel (1981).

Figure G.2: Social Structure and Social Mobility Slopes



Notes: Panel (a) shows the social structure (ST) slope, while panel (b) shows the social mobility (SM) slope.  $\Gamma_1 = \alpha + \beta$  and  $\Gamma_2 = \gamma + \beta$ . Data are based on Sobel (1981).

## References

Bijlsma, Maarten J., Rhian M. Daniel, Fanny Janssen, and Bianca L. De Stavola. 2017. "An Assessment and Extension of the Mechanism-Based Approach to the Identification of Age-Period-Cohort Models." *Demography* 54:721–743. ISSN 0070-3370, 1533-7790. doi:10.1007/s13524-017-0562-6.

Billingsley, Sunnee and Anna Matysiak. 2018. "Social Mobility and Family Expansion in Poland and Russia during Socialism and Capitalism." *Advances in Life Course Research* 36:80–91. ISSN 1040-2608. doi:10.1016/j.alcr.2018.04.001.

Blalock, Hubert M. 1966. "Comment: Status Inconsistency and the Identification Problem." *Public Opinion Quarterly* 30:130. ISSN 0033362X. doi:10.1086/267387.

Breen, Richard. 2001. "Social Mobility and Constitutional and Political Preferences in Northern Ireland." *The British Journal of Sociology* 52:621–645. ISSN 1468-4446. doi:10.1080/00071310120084508.

Breen, Richard and Christopher T. Whelan. 1994. "Social Class, Class Origins and Political Partisanship in the Republic of Ireland." *European Journal of Political Research* 26:117–133. ISSN 1475-6765. doi:10.1111/j.1475-6765.1994.tb00436.x.

Bulczak, Grzegorz and Alexi Gugushvili. 2022. "Downward Income Mobility among Individuals with Poor Initial Health Is Linked with Higher Cardiometabolic Risk." *PNAS Nexus* 1:pgac012. ISSN 2752-6542. doi:10.1093/pnasnexus/pgac012.

Bulczak, Grzegorz, Alexi Gugushvili, and Olga Zelinska. 2022. "How Are Social Origin, Destination and Mobility Linked to Physical, Mental, and Self-Rated Health? Evidence from the United States." *Quality & Quantity* 56:3555–3585. ISSN 1573-7845. doi:10.1007/s11135-021-01286-5.

Chan, Tak Wing and Heather Turner. 2017. "Where Do Cultural Omnivores Come from? The Implications of Educational Mobility for Cultural Consumption." *European Sociological Review* 33:576–589. ISSN 0266-7215. doi:10.1093/esr/jcx060.

Chen, Edith, Gene H. Brody, and Gregory E. Miller. 2022. "What Are the Health Consequences of Upward Mobility?" *Annual Review of Psychology* 73:599–628. doi:10.1146/annurev-psych-033020-122814.

Clifford, P. and A. F. Heath. 1993. "The Political Consequences of Social Mobility." *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 156:51–61. ISSN 0964-1998. doi:10.2307/2982860.

Clogg, Clifford C. 1982. "Cohort Analysis of Recent Trends in Labor Force Participation." *Demography* 19:459–479.

Coulangeon, Philippe. 2013. "The Omnivore and the 'Class Defector': Musical Taste and Social Mobility in Contemporary France." URL [https://www.sciencespo.fr/osc/sites/sciencespo.fr.osc/files/nd\\_2013\\_03.pdf](https://www.sciencespo.fr/osc/sites/sciencespo.fr.osc/files/nd_2013_03.pdf).

——. 2015. "Social Mobility and Musical Tastes: A Reappraisal of the Social Meaning of Taste Eclecticism." *Poetics* 51:54–68. ISSN 0304-422X. doi:10.1016/j.poetic.2015.05.002.

Creighton, Mathew J., Daniel Capistrano, and Monika da Silva Pedroso. 2022. "Educational Mobility and Attitudes Towards Migration from an International Comparative Perspective." *Journal of International Migration and Integration* ISSN 1874-6365. doi:10.1007/s12134-022-00977-8.

Daenekindt, Stijn. 2017. "The Experience of Social Mobility: Social Isolation, Utilitarian Individualism, and Social Disorientation." *Social Indicators Research* 133:15–30. ISSN 0303-8300, 1573-0921. doi:10.1007/s11205-016-1369-3.

Daenekindt, Stijn and Henk Roose. 2013. "A Mise-en-scène of the Shattered Habitus: The Effect of Social Mobility on Aesthetic Dispositions Towards Films." *European Sociological Review* 29:48–59. ISSN 0266-7215. doi:10.1093/esr/jcr038.

———. 2014. "Social Mobility and Cultural Dissonance." *Poetics* 42:82–97. ISSN 0304-422X. doi:10.1016/j.poetic.2013.11.002.

Daenekindt, Stijn, Jeroen van der Waal, and Willem de Koster. 2018. "Social Mobility and Political Distrust: Cults of Gratitude and Resentment?" *Acta Politica* 53:269–282. ISSN 1741-1416. doi:10.1057/s41269-017-0050-4.

De Graaf, Nan Dirk, Paul Nieuwbeerta, and Anthony Heath. 1995. "Class Mobility and Political Preferences: Individual and Contextual Effects." *American Journal of Sociology* 100:997–1027. ISSN 0002-9602. doi:10.1086/230607.

De Graaf, Nan Dirk and Wout Ultee. 1990. "Individual Preferences, Social Mobility and Electoral Outcomes." *Electoral Studies* 9:109–132. ISSN 0261-3794. doi:10.1016/0261-3794(90)90003-Q.

Dennison, Christopher R. 2018. "Intergenerational Mobility and Changes in Drug Use Across the Life Course." *Journal of Drug Issues* 48:205–225. ISSN 0022-0426. doi:10.1177/0022042617746974.

Dhoore, Jasper, Stijn Daenekindt, and Henk Roose. 2019. "Social Mobility and Life Satisfaction across European Countries: A Compositional Perspective on Dissociative Consequences of Social Mobility." *Social Indicators Research* 144:1257–1272. ISSN 1573-0921. doi:10.1007/s11205-019-02083-2.

Domański, Henryk and Zbigniew Karpiński. 2018. "Intergenerational Mobility and Omnivorism in Eating." *Appetite* 121:83–92. ISSN 0195-6663. doi:10.1016/j.appet.2017.10.030.

Duncan, Otis Dudley. 1966. "Methodological Issues in the Study of Social Mobility." In *Social Structure and Mobility in Economic Development*, edited by Neil J. Smelser and Seymour Martin Lipset, pp. 51–97. Chicago, IL: Aldine.

Engzell, Per and Mathieu Ichou. 2020. "Status Loss: The Burden of Positively Selected Immigrants." *International Migration Review* 54:471–495. ISSN 0197-9183. doi:10.1177/0197918319850756.

Fan, Xiaoguang and Fei Yan. 2019. "The Long Shadow: Social Mobility and Political Participation in Urban China, 2006–2012." *Social Science Research* ISSN 0049-089X. doi:10.1016/j.ssresearch.2019.03.006.

Fosse, Ethan and Christopher Winship. 2018. "Moore–Penrose Estimators of Age–Period–Cohort Effects: Their Interrelationship and Properties." *Sociological Science* 5:304–334.

—. 2019a. “Analyzing Age-Period-Cohort Data: A Review and Critique.” *Annual Review of Sociology* 45:467–492. ISSN 0360-0572, 1545-2115. doi:10.1146/annurev-soc-073018-022616.

—. 2019b. “Bounding Analyses of Age-Period-Cohort Effects.” *Demography* 56:1975–2004.

Goldthorpe, John. 1999. “Modelling the Pattern of Class Voting in British Elections, 1964–1992.” In *The End of Class Politics? Class Voting in Comparative Context*, edited by Geoffrey Evans, pp. 59–82. London, UK: Oxford University Press.

Graf, Gloria Huei-Jong, Yalu Zhang, Benjamin W. Domingue, Kathleen Mullan Harris, Meeraj Kothari, Dayoon Kwon, Peter Muennig, and Daniel W Belsky. 2022. “Social Mobility and Biological Aging among Older Adults in the United States.” *PNAS Nexus* 1:pgac029. ISSN 2752-6542. doi:10.1093/pnasnexus/pgac029.

Gugushvili, Alexi, Grzegorz Bulczak, Olga Zelinska, and Jonathan Kolai. 2021. “Socioeconomic Position, Social Mobility, and Health Selection Effects on Allostatic Load in the United States.” *PLOS ONE* 16:e0254414. ISSN 1932-6203. doi:10.1371/journal.pone.0254414.

Gugushvili, Alexi, Yizhang Zhao, and Erzsébet Bukodi. 2019. “‘Falling from Grace’ and ‘Rising from Rags’: Intergenerational Educational Mobility and Depressive Symptoms.” *Social Science & Medicine* 222:294–304. ISSN 0277-9536. doi:10.1016/j.socscimed.2018.12.027.

—. 2020. “Intergenerational Educational Mobility and Smoking: A Study of 20 European Countries Using Diagonal Reference Models.” *Public Health* 181:94–101. ISSN 0033-3506. doi:10.1016/j.puhe.2019.12.009.

Heckman, James and Richard Robb. 1985. “Using Longitudinal Data to Estimate Age, Period and Cohort Effects in Earnings Equations.” In *Cohort Analysis in Social Research*, edited by Stephen E. Fienberg and William M. Mason, pp. 137–150. New York, NY: Springer.

Hernán, Miguel A. 2016. “Does Water Kill? A Call for Less Casual Causal Inferences.” *Annals of Epidemiology* 26:674–680. ISSN 10472797. doi:10.1016/j.annepidem.2016.08.016.

Hope, Keith. 1971. “Social Mobility and Fertility.” *American Sociological Review* 36:1019–1032. ISSN 0003-1224. doi:10.2307/2093762.

—. 1975. “Models of Status Inconsistency and Social Mobility Effects.” *American Sociological Review* 40:322–343. ISSN 0003-1224. doi:10.2307/2094461.

Houle, Jason N. and Molly A. Martin. 2011. “Does Intergenerational Mobility Shape Psychological Distress? Sorokin Revisited.” *Research in Social Stratification and Mobility* 29:193–203. ISSN 0276-5624. doi:10.1016/j.rssm.2010.11.001.

Iveson, Matthew H., Simon R. Cox, and Ian J. Deary. 2022. “Intergenerational Social Mobility and Health in Later Life: Diagonal Reference Models Applied to the Lothian Birth Cohort 1936.” *The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences* p. gbac107. ISSN 1758-5368. doi:10.1093/geronb/gbac107.

Jaime-Castillo, Antonio M. and Ildefonso Marqués-Perales. 2019. “Social Mobility and Demand for Redistribution in Europe: A Comparative Analysis.” *The British Journal of Sociology* 70:138–165. ISSN 1468-4446. doi:10.1111/1468-4446.12363.

Kaiser, Caspar and Nhat An Trinh. 2021. "Positional, Mobility, and Reference Effects: How Does Social Class Affect Life Satisfaction in Europe?" *European Sociological Review* ISSN 0266-7215. doi:10.1093/esr/jcaa067.

Kempel, Mia Klinkvort, Trine Nøhr Winding, Morten Böttcher, and Johan Hviid Andersen. 2022. "Evaluating the Association between Socioeconomic Position and Cardiometabolic Risk Markers in Young Adulthood by Different Life Course Models." *BMC Public Health* 22:694. ISSN 1471-2458. doi:10.1186/s12889-022-13158-0.

Kraus, Lisa-Marie and Stijn Daenekindt. 2022. "Moving into Multiculturalism. Multicultural Attitudes of Socially Mobile Individuals without a Migration Background." *European Societies* 24:7–28. ISSN 1461-6696. doi:10.1080/14616696.2021.1976415.

Kulis, Stephen. 1987. "Socially Mobile Daughters and Sons of the Elderly: Mobility Effects within the Family Revisited." *Journal of Marriage and Family* 49:421–433. ISSN 0022-2445. doi:10.2307/352311.

Kwon, Aram. 2022. "The Impact of Intergenerational Mobility on Well-being in Japan." *Social Indicators Research* 162:253–277. ISSN 1573-0921. doi:10.1007/s11205-021-02834-0.

Luo, Liying. 2022. "Heterogeneous Effects of Intergenerational Social Mobility: An Improved Method and New Evidence." *American Sociological Review* 87:143–173. ISSN 0003-1224. doi:10.1177/00031224211052028.

Marshal, Gordon and David Firth. 1999. "Social Mobility and Personal Satisfaction: Evidence from Ten Countries." *The British Journal of Sociology* 50:28–48.

McNeil, Andrew. 2022. "Intergenerational Social Mobility and Anti-System Support: The Journey Matters." URL <https://eprints.lse.ac.uk/113496/>.

McNeil, Andrew and Charlotte Haberstroh. 2023. "Intergenerational Social Mobility and the Brexit Vote: How Social Origins and Destinations Divide Britain." *European Journal of Political Research* 62:612–632. ISSN 1475-6765. doi:10.1111/1475-6765.12526.

Mijs, Jonathan J.B., Stijn Daenekindt, Willem de Koster, and Jeroen van der Waal. 2022. "Belief in Meritocracy Reexamined: Scrutinizing the Role of Subjective Social Mobility." *Social Psychology Quarterly* p. 01902725211063818. ISSN 0190-2725. doi:10.1177/01902725211063818.

Missinne, Sarah, Stijn Daenekindt, and Piet Bracke. 2015. "The Social Gradient in Preventive Healthcare Use: What Can We Learn from Socially Mobile Individuals?" *Sociology of Health & Illness* 37:823–838. ISSN 1467-9566. doi:10.1111/1467-9566.12225.

Monden, Christiaan W.S. and Nan Dirk de Graaf. 2013. "The Importance of Father's and Own Education for Self-Assessed Health across Europe: An East–West Divide?" *Sociology of Health & Illness* 35:977–992. ISSN 1467-9566. doi:10.1111/1467-9566.12015.

Nieuwbeerta, Paul. 1995. *The Democratic Class Struggle in Twenty Countries, 1945-1990*. Amsterdam, NL: Thesis Publishers. ISBN 978-90-5170-336-8.

Nieuwbeerta, Paul, Nan Dirk de Graaf, and Wout Ultee. 2000. "The Effects of Class Mobility on Class Voting in Post-War Western Industrialized Countries." *European Sociological Review* 16:327–348. ISSN 0266-7215. doi:10.1093/esr/16.4.327.

Nieuwbeerta, Paul and Graaf, Nan Dirk de. 1993. "Intergenerational Class Mobility and Political Preferences in the Netherlands between 1970 and 1986." *Exchanges: The Warwick Research Journal* 29:28–45.

Paterson, Lindsay. 2008. "Political Attitudes, Social Participation and Social Mobility: A Longitudinal Analysis." *The British Journal of Sociology* 59:413–434. ISSN 1468-4446. doi:10.1111/j.1468-4446.2008.00201.x.

Pearl, Judea. 2009. *Causality: Models, Reasoning, and Inference, 2nd Edition*. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-89560-6.

Präg, Patrick and Lindsay Richards. 2019. "Intergenerational Social Mobility and Allostatic Load in Great Britain." *Journal of Epidemiology and Community Health* 73:100–105. ISSN 0143-005X, 1470-2738. doi:10.1136/jech-2017-210171.

Rehkopf, David H., M. Maria Glymour, and Theresa L. Osypuk. 2016. "The Consistency Assumption for Causal Inference in Social Epidemiology: When a Rose Is Not a Rose." *Current Epidemiology Reports* 3:63–71. ISSN 2196-2995. doi:10.1007/s40471-016-0069-5.

Robins, James M., Miguel Ángel Hernán, and Babette Brumback. 2000. "Marginal Structural Models and Causal Inference in Epidemiology." *Epidemiology* 11:550–560. ISSN 1044-3983. doi:10.1097/00001648-200009000-00011.

Rotengruber, Przemysław and Juliusz Tyszka. 2021. "Cultural Course Correction or Back to the Past?" URL <https://kulturoznawstwo.amu.edu.pl/publikacje/cultural-course-correction-or-back-to-the-past/>.

Schaeffer, Merlin. 2019. "Social Mobility and Perceived Discrimination: Adding an Intergenerational Perspective." *European Sociological Review* 35:65–80. ISSN 0266-7215. doi:10.1093/esr/jcy042.

Schuck, Bettina. 2019. *Intergenerational Mobility of Young Europeans: A Comparative Analysis of Social and Political Consequences*. Ph.D. thesis, University of Heidelberg. doi:10.11588/heidok.00026229. URL <https://doi.org/10.11588/heidok.00026229>.

Schuck, Bettina and Nadia Steiber. 2018. "Does Intergenerational Educational Mobility Shape the Well-Being of Young Europeans? Evidence from the European Social Survey." *Social Indicators Research* 139:1237–1255. ISSN 1573-0921. doi:10.1007/s11205-017-1753-7.

Sieben, Inge. 2017. "Child-Rearing Values: The Impact of Intergenerational Class Mobility." *International Sociology* 32:369–390. ISSN 0268-5809. doi:10.1177/0268580917693954.

Smith, Herbert L. 2021. "Age-Period-Cohort Analysis: What Is It Good For?" In *Age, Period and Cohort Effects: Statistical Analysis and the Identification Problem*, pp. 176–205. New York, NY: Routledge.

Steiber, Nadia. 2019. "Intergenerational Educational Mobility and Health Satisfaction across the Life Course: Does the Long Arm of Childhood Conditions Only Become Visible Later in Life?" *Social Science & Medicine* 242:112603. ISSN 0277-9536. doi:10.1016/j.socscimed.2019.112603.

Tarrence, Jacob. 2018. *Struggling in The Land of Opportunity: Examining Racial Heterogeneity in The Effects of Intergenerational Educational Mobility On Health*. Ph.D. thesis, The Ohio State University.

Tarrence, Jake. 2022. "Is Educational Mobility Harmful for Health?" *Social Science Research* 107:102741. ISSN 0049-089X. doi:10.1016/j.ssresearch.2022.102741.

Tolsma, Jochem, Nan Dirk De Graaf, and Lincoln Quillian. 2009. "Does Intergenerational Social Mobility Affect Antagonistic Attitudes towards Ethnic Minorities?" *The British Journal of Sociology* 60:257–277. ISSN 1468-4446. doi:10.1111/j.1468-4446.2009.01230.x.

Turner, Tom and Lorraine Ryan. 2023. "Shaping Political Orientations: Testing the Effect of Unemployment on Ideological Beliefs and Voting Behaviour." *Irish Political Studies* 38:189–209. ISSN 0790-7184, 1743-9078. doi:10.1080/07907184.2022.2118719.

van der Waal, Jeroen, Stijn Daenekindt, and Willem de Koster. 2017. "Statistical Challenges in Modelling the Health Consequences of Social Mobility: The Need for Diagonal Reference Models." *International Journal of Public Health* 62:1029–1037. ISSN 1661-8564. doi:10.1007/s00038-017-1018-x.

Vansteelandt, Stijn and Rhian M. Daniel. 2017. "Interventional Effects for Mediation Analysis with Multiple Mediators." *Epidemiology* 28:258–265. ISSN 1044-3983. doi:10.1097/EDE.0000000000000596.

Vansteelandt, Stijn and Marshall Joffe. 2014. "Structural Nested Models and G-estimation: The Partially Realized Promise." *Statistical Science* 29:707–731. ISSN 0883-4237. doi:10.1214/14-STS493.

Veenstra, Gerry and Adam Vanzella-Yang. 2021. "Intergenerational Social Mobility and Self-Rated Health in Canada." *SSM - Population Health* 15:100890. ISSN 2352-8273. doi:10.1016/j.ssmph.2021.100890.

Weakliem, David L. 1992. "Does Social Mobility Affect Political Behaviour?" *European Sociological Review* 8:153–165. ISSN 0266-7215. doi:10.1093/oxfordjournals.esr.a036629.

Wiertz, Dingeman and Toni Rodon. 2021. "Frozen or Malleable? Political Ideology in the Face of Job Loss and Unemployment." *Socio-Economic Review* 19:307–331. ISSN 1475-1461. doi:10.1093/ser/mwz024.

Wilson, George, Vincent Roscigno, Carsten Sauer, and Nick Petersen. 2022. "Mobility, Inequality, and Beliefs About Distribution and Redistribution." *Social Forces* 100:1053–1079. ISSN 0037-7732. doi:10.1093/sf/soab047.

Wodtke, Geoffrey T. and Xiang Zhou. 2020. "Effect Decomposition in the Presence of Treatment-induced Confounding: A Regression-with-Residuals Approach." *Epidemiology* 31:369–375. ISSN 1044-3983. doi:10.1097/EDE.0000000000001168.

Wright, Erik Olin, ed. 2005. *Approaches to Class Analysis*. Cambridge, UK: Cambridge University Press.

Yang, Xiaozhao. 2016. *China Twenty Years After: Substance Use Under Rapid Social Changes*. Phd thesis, Purdue University. URL [https://docs.lib.psu.edu/open\\_access\\_dissertations/889/](https://docs.lib.psu.edu/open_access_dissertations/889/).

Yang, Xiaozhao Yousef. 2020. "Class Status and Social Mobility on Tobacco Smoking in Post-Reform China Between 1991 and 2011." *Nicotine & Tobacco Research* 22:2188–2195. ISSN 1469-994X. doi:10.1093/ntr/ntaa103.

Zang, Emma and Nan Dirk de Graaf. 2016. "Frustrated Achievers or Satisfied Losers? Inter- and Intragenerational Social Mobility and Happiness in China." *Sociological Science* 3:779–800. ISSN 23306696. doi:10.15195/v3.a33.

Zelinska, Olga, Alexi Gugushvili, and Grzegorz Bulczak. 2021. "Social Mobility, Health and Well-being in Poland." *Frontiers in Sociology* 6:736249. ISSN 2297-7775. doi:10.3389/fsoc.2021.736249.

Zhao, Yizhang and Yaojun Li. 2019. "Differential Acculturation: A Study of Well-Being Differences in Intergenerational Social Mobility between Rural and Urban China." *Sociology* 53:724–743. ISSN 0038-0385. doi:10.1177/0038038518818405.